Skip to main content
An official website of the United States government
Government Funding Lapse
Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit cc.nih.gov.

Updates regarding government operating status and resumption of normal operations can be found at opm.gov.

Technology ID
TAB-4156

PARP Inhibitor and NO-Donor Dual Prodrugs as Anticancer Agents

E-Numbers
E-220-2011-0
Lead Inventors
Maciag, Anna
Co-Inventors
Saavedra, Joseph
Keefer, Larry
Ji, Xinhua
Kumari, Vandana
Applications
Therapeutics
Therapeutic Areas
Oncology
Development Stages
Pre-clinical (in vivo)
Lead IC
NCI
ICs
NCI
Leidos

Poly-ADP ribose polymerase-1 (PARP-1) is a critical enzyme involved in DNA repair.  The inhibition of PARP has emerged as a promising strategy in cancer therapy.  Numerous PARP inhibitors have been developed and advanced into clinical trials, both for use as single agents in specific patient populations and as combination therapies with various chemotherapeutics.  The induction of strand break damage to DNA, as has been demonstrated in cancer cells treated with O2-arylated diazeniumdiolates, coupled with inhibition of DNA repair by PARP inhibitors, represents a novel rationale for effective combination therapy.

Scientists at NCI developed prodrugs that combine structural features of the known PARP inhibitor olaparib  with an O2-arylated diazeniumdiolate in one hybrid molecule.  The two-component prodrug has the advantage of delivering both a DNA damaging agent (NO) and an inhibitor of DNA repair (PARP inhibitor) simultaneously to a cancer cell.  The prodrugs are activated by glutathione (GSH) and the reaction accelerated by glutathione S-transferase P1 (GSTP1), an enzyme frequently overexpressed in cancer.  This mechanism consumes GSH while releasing cytotoxic NO and a PARP inhibitor simultaneously in the target cancer cell.  As high levels of GSH/GSTP1 are often a feature of cancer cells, the compound is predicted to have strong synergy with other anticancer therapeutics. When compared to the PARP inhibitor olaparib, these hybrid molecules exceeded the in vivo anticancer potency in xenograft models, resulting in more extensive DNA strand break damage, and ultimately greater apoptosis induction, as observed in vitro. These compounds are predicted to have strong radio- and chemosensitizing effects.

Competitive Advantages:

  • Combination of a DNA damaging agent and a DNA repair inhibitor in one molecule eliminates the need to administer two separate treatments;
  • Activation mechanism that involves overexpressed in cancers GSTP1 targets drugs to cancer cell

Commercial Applications:

  • Stand-alone cancer therapeutics or as part of a combination therapy with other cancer therapies
Licensing Contacts