You are here

Share:

Search Technologies

Showing 1-20 of 70 results found

Virus-Like Particles That Can Deliver Proteins and RNA

The present invention describes novel virus-like particles (VLPs) that are capable of binding to and replicating within a target mammalian cell, including human cells. The claimed VLPs are safer than viral delivery because they are incapable of re-infecting target cells. The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.

Vaccines for HIV

The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development. Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV. Two major hurdles to overcome are immunodominance and sequence diversity. This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. NCI seeks licensees and/or research collaborators to commercialize this technology, which has been validated in macaque models.

T-cell Receptor Targeting Human Papillomavirus-16 E7 Oncoprotein

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a T-cell receptor (TCR) that confers high-avidity recognition of the HPV-specific oncoprotein E7. The TCR may be used in an adoptive cell therapy approach utilizing genetically engineered lymphocytes to treat HPV-positive malignancies.

T-cell Receptor Targeting Human Papillomavirus-16 E6 Oncoprotein

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a T-cell receptor (TCR) that confers high-avidity recognition of the HPV-specific oncoprotein E6. The TCR may be used in an adoptive cell therapy approach utilizing genetically engineered lymphocytes to treat HPV-positive malignancies.

Synthetic Bacterial Nanoparticles as Drug and Vaccine Delivery Vehicles

Engineered bacterial spores can provide many useful functions such as the treatment of infections, use as an adjuvant for the delivery of vaccines, and the enzymatic degradation of environmental pollutants. Researchers at the National Cancer Institute’s Laboratory of Molecular Biology have developed a novel, synthetic spore husk-encased lipid bilayer (SSHEL) particle that is uniquely suited for a variety of these functions. NCI seeks partners to license and/or co-develop this technology toward commercialization.

Synergistic Use of Exo VII Inhibitors And Quinolone Antibiotics For Treating Bacterial Infection

Scientists at the National Cancer Institute (NCI) have discovered a bacterial exonuclease VII (ExoVII) inhibitor that increases the potency of widely used quinolone antibiotics targeting prokaryotic type IIA topoisomerases. NCI seeks research co-development partners and/or licensees for the development of ExoVII inhibitors as new antibiotic adjuvants to boost the efficacy of quinolone antibiotics and/or restore the susceptibility of resistant bacteria.

Small Molecule Inhibitors of Drug Resistant Forms of HIV-1 Integrase

Researchers at the National Cancer Institute discovered small-molecule compounds whose activity against HIV-1 integrase mutants confer greater resistance than currently approved INSTIs. Preliminary DMPK and ADME studies have been completed by the NCI researchers. The National Cancer Institute seeks partners to commercialize this class of compounds through licensing or co-development.

Single domain CD4, HIV-1 Antibodies, and Fusion Proteins for treatment of HIV

Researchers at the National Cancer Institute (NCI) have developed single domain human CD4 proteins to inhibit HIV-1 entry and improved human domain antibodies against HIV-1. Fusion proteins comprising the single domain CD4 and HIV-1 antibody can be used to effectively neutralize HIV-1 in vitro. Researchers seek licensing for development of these antibody-based therapeutics for the treatment of HIV-1.

Single Domain Antibodies Targeting the S2 Subunit of SARS-CoV-2 Spike Protein

Scientists at the National Cancer Institute (NCI) isolated a panel of single domain antibodies (known as ‘nanobodies’), targeting the S2 subunit of the spike protein of SARS-CoV-2 virus. These nanobodies bind to a highly conserved region in the S2 subunit of the spike protein, suggesting the potential to treat current and future SARS-CoV infections. The NCI seeks parties interested in collaborative research and/or licensing to further develop these nanobodies as a possible treatment of COVID-19 infections.

Scytovirin Domain 1 Related Polypeptides

Researchers at the NCI seek licensing for novel anti-HIV peptide therapeutics. The researchers developed novel proteins for HIV inhibition. Scytovirin is a potent anti-HIV protein with two domains having strong symmetry. NCI researchers produced a much smaller, functional, scytovirin domain polypeptide – SD1 – for use as a HIV therapeutic.

RNASEH-Assisted Detection Assay for RNA

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for the development and commercialization of a diagnostic assay that detects sequence-specific (viral) RNA.

Renal Selective Unsaturated Englerin Analogues

Researchers at the National Cancer Institute (NCI) have developed a number of analogs of the natural product englerin A, an inhibitor of renal cancer cell growth. Englerin A is thought to exert its anticancer effects by activating protein kinase C (PKC) theta, and exert cytotoxic effects through activation of transient receptor potential cation (TRPC) channels. The invention englerin analogues provide promising treatment strategies for various cancers, diabetes, and HIV, and other diseases associated with the PKC theta and/or TRPC ion channel proteins. Researchers at the NCI seek licensing and/or co-development research collaborations for englerin A analogue compounds.

Polymeric Delivery Platform for Therapeutics

The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for a polymeric drug delivery platform that targets scavenger receptor A1 (SR-A1), a receptor highly expressed in macrophages, monocytes, mast cells, dendritic cells (myeloid lineages), and endothelial cells. The platform delivers various immunomodulatory therapeutic cargo including small molecule drugs, therapeutic peptides, and vaccines, to the lymphatic system and myeloid/antigen presenting cell (APC) sub-populations.

Polymer-Cast Inserts for Cell Histology and Microscopy

The National Cancer Institute (NCI) seeks co-development partners and/or licensees for polymer-cast inserts for cell histology and microscopy; a system for high throughput three-dimensional (3D) cell culture and screening microscopy.

Peptide Inhibitors for Viral Infections and as Anti-inflammatory Agents

IFN-gamma and IL-10 are cytokine signaling molecules that play fundamental roles in inflammation, cancer growth and autoimmune diseases.  Unfortunately, there are no specific inhibitors of IFN-gamma or IL-10 on the market to date. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop selective IL-10 and IFN-gamma peptide inhibitors.

Pages