You are here

Share:

Search Technologies

Showing 1-20 of 70 results found

Human Antibodies Against Middle East Respiratory Syndrome Coronavirus

The National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to co-develop antibody-based therapeutic against MERS-CoV, including animal studies, cGMP manufacturing, and clinical trials.

Vaccines for HIV

The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development. Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV. Two major hurdles to overcome are immunodominance and sequence diversity. This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. NCI seeks licensees and/or research collaborators to commercialize this technology, which has been validated in macaque models.

Methods of analyzing virus-derived therapeutics

Researchers at the National Cancer Institute’s Biopharmaceutical Development Program recently developed massively parallel sequencing methods for virus-derived therapeutics such as viral vaccines and oncolytic immunotherapies, for which the NCI seeks licensees or co-development collaborations.

Anti-Viral Compounds that Inhibit HIV Activity

The National Cancer Institute (NCI) Molecular Targets Laboratory is seeking parties interested in collaborative research to co-develop antiviral tropolone derivatives developed by systematic medicinal chemistry on the lead series.

Nucleic Acid Nanoparticles for Triggering RNA Interference

RNA interference (RNAi) is a naturally occurring cellular post-transcriptional gene regulation process that utilizes small double-stranded RNAs to trigger and guide gene silencing. By introducing synthetic RNA duplexes called small-interfering RNAs (siRNAs), we can harness the RNAi machinery for therapeutic gene control and the treatment of various diseases. The National Cancer Institute seeks partners to license or co-develop RNA, RNA-DNA, and DNA-RNA hybrid nanoparticles consisting of a DNA or RNA core with attached RNA or DNA hybrid duplexes.

Peptide Inhibitors for Viral Infections and as Anti-inflammatory Agents

IFN-gamma and IL-10 are cytokine signaling molecules that play fundamental roles in inflammation, cancer growth and autoimmune diseases.  Unfortunately, there are no specific inhibitors of IFN-gamma or IL-10 on the market to date. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop selective IL-10 and IFN-gamma peptide inhibitors.

Diagnostic Marker for Improving Treatment Outcomes of Hepatitis C

NCI Researchers have discovered Interferon-lambda 4 (IFNL4), a protein found through analysis of genomic data. Preliminary studies indicate that this protein may play a role in the clearance of HCV and may be a new target for diagnosing and treating HCV infection. The National Cancer Institute (NCI) Division of Cancer Epidemiology and Genetics (DCEG) Immunoepidemiology Branch is seeking statements of capability or interest from parties interested in in-licensing or collaborative research to further co-develop a gene-based diagnostic for Hepatitis C virus (HepC, HCV).

Novel Fusion Proteins for HIV Vaccine

The National Cancer Institute’s Cancer and Inflammation Program seeks parties to license gp120 and CD4-induced antibody fusion proteins for use in an HIV vaccine.

Virus-Like Particles That Can Deliver Proteins and RNA

The present invention describes novel virus-like particles (VLPs) that are capable of binding to and replicating within a target mammalian cell, including human cells. The claimed VLPs are safer than viral delivery because they are incapable of re-infecting target cells. The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.

Novel Anti-HIV Proteins from Coral Reefs

Scientists at the National Cancer Institute's Molecular Targets Laboratory have discovered that Cnidarins as a novel class of highly potent proteins capable of blocking the HIV virus from penetrating T-cells. The National Cancer Institute seeks parties interested in collaborative research to license or co-develop large-scale recombinant production of cnidarins.

Multifunctional RNA Nanoparticles as Cancer and HIV Therapeutics

The promise of RNA interference based therapeutics is made evident by the recent surge of biotechnological drug companies that pursue such therapies and their progression into human clinical trials. The present technology discloses novel RNA  and RNA/DNA nanoparticles including multiple siRNAs, RNA aptamers, fluorescent dyes, and proteins. The National Cancer Institute sees parties interested licensing this technology  or in collaborative research to co-develop RNAi-based nanoparticle therapeutics for cancer and HIV.

Small Molecule Inhibitors of Drug Resistant Forms of HIV-1 Integrase

Researchers at the National Cancer Institute discovered small-molecule compounds whose activity against HIV-1 integrase mutants confer greater resistance than currently approved INSTIs. Preliminary DMPK and ADME studies have been completed by the NCI researchers. The National Cancer Institute seeks partners to commercialize this class of compounds through licensing or co-development.

Anti-bacterial Treatments Using Peptide-Based Inhibitors of the STAT3-IL10 Pathway

Tuberculosis (TB) is an infectious disease that typically affects the lungs. Current therapies include a panel of antibiotics given over a range of 6-9 months. As a result of the expense of treatment, the extended timeframe needed for effective treatment, and the scarcity of medicines in some developing countries, patient compliance with TB treatment is very low and results in multi-drug resistant TB (MDR-TB). There remains a need for a faster, more effective treatment for TB. NCI researchers seek licensing and/or co-development of peptide inhibitors of STAT3 and IL-10 developed to treat bacterial infections such as tuberculosis. See aslo: NIH inventions E-164-2007 and E-167-2010

Griffithsin-Based Anti-viral Therapeutics with Improved Stability and Solubility

Scientists at the National Cancer Institute's Molecular Targets Laboratory have modified the Cnidarin-derived griffithsin compound to have greater storage time and stability. Griffithsin compounds are a class of highly potent proteins capable of blocking the HIV virus from penetrating T cells. The National Cancer Institute seeks parties interested in collaborative research to license or co-develop large-scale recombinant production of the compound.

Synthetic Bacterial Nanoparticles as Drug and Vaccine Delivery Vehicles

Engineered bacterial spores can provide many useful functions such as the treatment of infections, use as an adjuvant for the delivery of vaccines, and the enzymatic degradation of environmental pollutants. Researchers at the National Cancer Institute’s Laboratory of Molecular Biology have developed a novel, synthetic spore husk-encased lipid bilayer (SSHEL) particle that is uniquely suited for a variety of these functions. NCI seeks partners to license and/or co-develop this technology toward commercialization.

Pages