You are here

Share:

Search Technologies

Showing 1-20 of 63 results found

Polymeric Delivery Platform for Therapeutics

The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for a polymeric drug delivery platform that targets scavenger receptor A1 (SR-A1), a receptor highly expressed in macrophages, monocytes, mast cells, dendritic cells (myeloid lineages), and endothelial cells. The platform delivers various immunomodulatory therapeutic cargo including small molecule drugs, therapeutic peptides, and vaccines, to the lymphatic system and myeloid/antigen presenting cell (APC) sub-populations.

Novel Anti-HIV Proteins from Coral Reefs

Scientists at the National Cancer Institute's Molecular Targets Laboratory have discovered that Cnidarins as a novel class of highly potent proteins capable of blocking the HIV virus from penetrating T-cells. The National Cancer Institute seeks parties interested in collaborative research to license or co-develop large-scale recombinant production of cnidarins.

Anti-bacterial Treatments Using Peptide-Based Inhibitors of the STAT3-IL10 Pathway

Tuberculosis (TB) is an infectious disease that typically affects the lungs. Current therapies include a panel of antibiotics given over a range of 6-9 months. As a result of the expense of treatment, the extended timeframe needed for effective treatment, and the scarcity of medicines in some developing countries, patient compliance with TB treatment is very low and results in multi-drug resistant TB (MDR-TB). There remains a need for a faster, more effective treatment for TB. NCI researchers seek licensing and/or co-development of peptide inhibitors of STAT3 and IL-10 developed to treat bacterial infections such as tuberculosis. See aslo: NIH inventions E-164-2007 and E-167-2010

Scytovirin Domain 1 Related Polypeptides

Researchers at the NCI seek licensing for novel anti-HIV peptide therapeutics. The researchers developed novel proteins for HIV inhibition. Scytovirin is a potent anti-HIV protein with two domains having strong symmetry. NCI researchers produced a much smaller, functional, scytovirin domain polypeptide – SD1 – for use as a HIV therapeutic.

Nucleic Acid Nanoparticles for Triggering RNA Interference

RNA interference (RNAi) is a naturally occurring cellular post-transcriptional gene regulation process that utilizes small double-stranded RNAs to trigger and guide gene silencing. By introducing synthetic RNA duplexes called small-interfering RNAs (siRNAs), we can harness the RNAi machinery for therapeutic gene control and the treatment of various diseases. The National Cancer Institute seeks partners to license or co-develop RNA, RNA-DNA, and DNA-RNA hybrid nanoparticles consisting of a DNA or RNA core with attached RNA or DNA hybrid duplexes.

Griffithsin-Based Anti-viral Therapeutics with Improved Stability and Solubility

Scientists at the National Cancer Institute's Molecular Targets Laboratory have modified the Cnidarin-derived griffithsin compound to have greater storage time and stability. Griffithsin compounds are a class of highly potent proteins capable of blocking the HIV virus from penetrating T cells. The National Cancer Institute seeks parties interested in collaborative research to license or co-develop large-scale recombinant production of the compound.

Fusion Proteins as HIV-1 Entry Inhibitors

Novel fusion proteins with good stability and potency against HIV-1. These fusion proteins have good drug properties and potential as prophylactics or therapeutics against HIV-1 infection. Researchers at the NCI seek licensing for the development and commercialization of novel fusion proteins as therapeutics or prophylactics against HIV-1 infection.

Multifunctional RNA Nanoparticles as Cancer and HIV Therapeutics

The promise of RNA interference based therapeutics is made evident by the recent surge of biotechnological drug companies that pursue such therapies and their progression into human clinical trials. The present technology discloses novel RNA  and RNA/DNA nanoparticles including multiple siRNAs, RNA aptamers, fluorescent dyes, and proteins. The National Cancer Institute sees parties interested licensing this technology  or in collaborative research to co-develop RNAi-based nanoparticle therapeutics for cancer and HIV.

Synthetic Bacterial Nanoparticles as Drug and Vaccine Delivery Vehicles

Engineered bacterial spores can provide many useful functions such as the treatment of infections, use as an adjuvant for the delivery of vaccines, and the enzymatic degradation of environmental pollutants. Researchers at the National Cancer Institute’s Laboratory of Molecular Biology have developed a novel, synthetic spore husk-encased lipid bilayer (SSHEL) particle that is uniquely suited for a variety of these functions. NCI seeks partners to license and/or co-develop this technology toward commercialization.

Improved HIV Vaccines Through Ras Activation

The National Cancer Institute (NCI) Vaccine Branch, seeks research co-development or licenses for a novel method of improving HIV vaccine efficacy by activating Ras signaling. Upregulating the Ras pathway can improve an HIV patient’s immune response to anti-retroviral vaccines.

Renal Selective Unsaturated Englerin Analogues

Researchers at the National Cancer Institute (NCI) have developed a number of analogs of the natural product englerin A, an inhibitor of renal cancer cell growth. Englerin A is thought to exert its anticancer effects by activating protein kinase C (PKC) theta, and exert cytotoxic effects through activation of transient receptor potential cation (TRPC) channels. The invention englerin analogues provide promising treatment strategies for various cancers, diabetes, and HIV, and other diseases associated with the PKC theta and/or TRPC ion channel proteins. Researchers at the NCI seek licensing and/or co-development research collaborations for englerin A analogue compounds.

Peptide Inhibitors for Viral Infections and as Anti-inflammatory Agents

IFN-gamma and IL-10 are cytokine signaling molecules that play fundamental roles in inflammation, cancer growth and autoimmune diseases.  Unfortunately, there are no specific inhibitors of IFN-gamma or IL-10 on the market to date. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop selective IL-10 and IFN-gamma peptide inhibitors.

Diagnostic Marker for Improving Treatment Outcomes of Hepatitis C

NCI Researchers have discovered Interferon-lambda 4 (IFNL4), a protein found through analysis of genomic data. Preliminary studies indicate that this protein may play a role in the clearance of HCV and may be a new target for diagnosing and treating HCV infection. The National Cancer Institute (NCI) Division of Cancer Epidemiology and Genetics (DCEG) Immunoepidemiology Branch is seeking statements of capability or interest from parties interested in in-licensing or collaborative research to further co-develop a gene-based diagnostic for Hepatitis C virus (HepC, HCV).

Enhanced Immunogenicity Against HIV-1 Using a DNA-prime Poxvirus Vaccination

Researchers at the National Cancer Institute (NCI) seek research co-development or licenses for a method of stimulating an immune response in a human at risk for infection by, or already infected with, an HIV-1 retrovirus. This method utilizes DNA vaccines to stimulate CD8+ T cell immune responses.

Novel Fusion Proteins for HIV Vaccine

The National Cancer Institute’s Cancer and Inflammation Program seeks parties to license gp120 and CD4-induced antibody fusion proteins for use in an HIV vaccine.

Functionally-Interdependent Shape-Switching Nucleic Acid Nanoparticles

Researchers at the National Cancer Institute (NCI) have developed nucleic-acid-based nanoparticle that can be adapted for RNA interference (RNAi), molecular imaging, or a combination thereof. The invention nanoparticles can be used as therapeutics in the treatment of cancer, whichthe NCI seeks parties to license or co-develop.

Pages