You are here

Share:

Search Technologies

Showing 21-40 of 62 results found

Anti-CD133 Monoclonal Antibodies as Cancer Therapeutics

Researchers at NCI developed a rabbit monoclonal antibody that recognizes the marker for CD133 and is useful in pharmacodynamic testing to inform targeted anti-cancer chemotherapy development and clinical monitoring. CD133 is a cell surface glycoprotein used as a marker and expressed in stem cells such as hematopoietic stem cells, endothelial progenitor cells and neural stem cells. The NCI seeks collaborative co-development or licensing partners for this technology.

Anti-Py1235-Met Immunological Binding Reagent as Cancer Diagnostic

This technology consists of highly specific rabbit monoclonal antibodies reactive with phosphorylated tyrosine located at amino acid 1235 in the human MET sequence. Binding to this pYl235 residue is independent of the phosphorylation of other tyrosines in the vicinity (1230 and 1234), does not cross-react with these nearby phosphotyrosine residues, and does not occur when Y1235 is unphosphorylated. Researchers at the NCI seek licensing and/or co-development research collaborations  to commercialize and develop a companion diagnostic for selective MET inhibitors.

New T-Cell Immunotherapy that Targets Aggressive Epithelial Tumors

Researchers at the National Cancer Institute’s Experimental Transplantation and Immunology Branch (NCI ETIB) developed a T Cell receptor that specifically targets the Kita-Kyushu Lung Cancer Antigen 1 (KK-LC-1) 52-60 epitope that is highly expressed by several common and aggressive epithelial tumor types.

Synthetic Bacterial Nanoparticles as Drug and Vaccine Delivery Vehicles

Engineered bacterial spores can provide many useful functions such as the treatment of infections, use as an adjuvant for the delivery of vaccines, and the enzymatic degradation of environmental pollutants. Researchers at the National Cancer Institute’s Laboratory of Molecular Biology have developed a novel, synthetic spore husk-encased lipid bilayer (SSHEL) particle that is uniquely suited for a variety of these functions. NCI seeks partners to license and/or co-develop this technology toward commercialization.

Module to Freeze and Store Frozen Tissue

Researchers at the National Cancer Institute (NCI) have developed an engineered storage unit for frozen tissue, that provides a permanent base on which to mount tissue frozen in OCT and an enclosure for storage. The unit provides for chain-of-custody labeling and acts as an insulating container to protect the specimen. Other elements include devices for freezing the tissue to the base, as well as a holder for the base to facilitate cryosectioning. Application of the storage system allows a frozen tissue specimen to be moved between storage and cryosectioning without loss of label, deformation of tissue, or thermal alterations.

Functionally-Interdependent Shape-Switching Nucleic Acid Nanoparticles

Researchers at the National Cancer Institute (NCI) have developed nucleic-acid-based nanoparticle that can be adapted for RNA interference (RNAi), molecular imaging, or a combination thereof. The invention nanoparticles can be used as therapeutics in the treatment of cancer, whichthe NCI seeks parties to license or co-develop.

Use of Replicators in Gene Therapy

This technology is a method of inhibiting or delaying gene silencing through specific transgene constructs that would be used for generating gene therapy vectors.

Small Molecule Anti-cancer Agents that Stabilize the MYC-G-Quadruplex

The proto-oncogene c-Myc is deregulated and overexpressed in ~70% of all cancers. Thus, c-Myc is an attractive therapeutic target. Beyond cancer, Myc is also a positive effector of tissue inflammation, and its function has been implicated in the pathophysiology of heart failure. Researchers at the National Cancer Institute (NCI) developed novel small molecules that target c-Myc at the transcriptional level, thus enabling a potential pan-cancer therapeutic. Specifically, these compounds stabilize the transcription repressing quadruplex in the c-Myc gene promoter region. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop these therapeutic targets.'

Sensitizing Cancer Cells to DNA Targeted Therapies

Chk2 is a protein kinase activated in response to DNA double strand breaks. In normal tissues, Chk2 phosphorylates and thereby activates substrates that induce programmed cell death, or apoptosis, via interactions with p53, E2F1, PML proteins. In cancer tissues, where apoptosis is suppressed, Chk2 phosphorylates and inactivates cell cycle checkpoints (via interactions with Cdc25, phosphatases and Brca1 proteins), which allows cancer cells to repair and tolerate DNA damage. Hence, Chk2 inhibitors would be expected to protect normal tissues by reducing apoptosis, and to sensitize cancer cells to DNA-targeted agents. The National Cancer Institute seeks licensees for small molecule inhibitors of Chk2 for the treatment of cancer.

NSAIDs that Assist the Treatment of Human Diseases

Researchers at the National Cancer Institute (NCI) developed compounds containing both a non-steroidal anti-inflammatory drug (NSAID) and a nitroxyl (HNO) -releasing agent that have significantly reduced toxicity, allowing their use for extended periods of time without severe side effects.The HNO-releasing moiety contained in this invention may expand the medical utility of NSAIDs. HNO releasing agents possess anticancer activity as well as good antioxidant properties, which has potential benefit for a variety of human diseases, including acute and chronic inflammation. NCI seeks parties to license or co-develop this technology.

Schweinfurthins and Uses Thereof

Researchers at the National Cancer Institute (NCI) developed novel analogs of the natural product schweinfurthins to treat neurofibromatosis type 1 (NF1). The compounds demonstrate effective growth inhibition in malignant peripheral nerve sheath tumor cell lines and mouse models of astrocytomas. Researchers seek licensing and/or co-development research collaboration opportunities to further develop the schweinfurthin analogs.

Brain endothelial reporter cells

The National Cancer Institute seeks parties interested in co-development of safe and effective TEM5 agonists and/or antagonists that modulate WNT signaling.

Peptide Mimetic Ligands of Polo-like Kinase 1 Polo Box Domain

Researchers at the National Cancer Institute (NCI) have developed peptidomimetic inhibitors that disrupt Polo-like kinase 1 (Plk1)-mediated protein interactions by targeting polo-box domain (PBD). The compounds are designed to selectively cause mitotic arrest in cancer cells with abnormal Plk1 expression. Researchers seek licensing and/or co-development research collaborations to further develop the inhibitors.

Peptide Mimetic Ligands of Polo-like Kinase 1 Polo Box Domain (“Plk1 PBD Portfolio”)

Researchers at the National Cancer Institute (NCI) have developed peptidomimetic inhibitors that disrupt Polo-like kinase 1 (Plk1)-mediated protein interactions by targeting polo-box domain (PBD). These compounds are designed to selectively cause mitotic arrest in cancer cells with abnormal Plk1 expression. Researchers seek licensing and/or co-development research collaborations to further develop the inhibitors.

Pages