You are here

Share:

Search Technologies

Showing 61-80 of 119 results found

Cancer-reactive T cells from Peripheral Blood

T-cells capable of reacting to mutations in cancer patients have potential use as therapeutics. Identifying and isolating these cells from patients is a crucial step in developing these treatments. Researchers at the National Cancer Institute (NCI) have developed a novel method of isolating mutation-reactive T-cells from a patient’s peripheral blood lymphocytes (PBL). The NCI, Surgery Branch, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize this method of isolating mutation-reactive T-cells from peripheral blood.

T-cell Receptors Targeting CD20-Positive Lymphomas and Leukemias

The National Cancer Institute (NCI) seeks licensees for a collection of T-cell receptors (TCRs) that specifically target the CD20 antigen expressed in B-lymphoid malignancies such as non-Hodgkin’s lymphoma (NHL), chronic lymphocytic leukemia, and acute lymphoblastic leukemia. The TCRs are being developed as therapeutics for the treatment of lymphomas and leukemias.

Design and Biological Activity of Novel Stealth Polymeric Lipid Nanoparticles for Enhanced Delivery of Hydrophobic Photodynamic Therapy Drugs

Scientists at the National Cancer Institute (NCI) developed a novel stealth lipid-based nanoparticle formulation comprising phospholipid, DC8,9PC and a polyethylene glycol-ated (PEGylated) lipid – such as DSPE-PEG2000 – that efficiently package a high amounts of hydrophobic photodynamic drug (PDT) – such as HPPH – in stable vesicles. This HPPH-loaded liposome system demonstrates higher serum stability and ambient temperature stability upon storage. It exhibits increased tumor accumulation and improved animal survival in mice tumor models compared to the formulation in current clinical trials. The NCI seeks co-development partners and/or corporate licensees for the application of the technology as an anti-cancer therapeutic.

Nucleic Acid Nanoparticles for Triggering RNA Interference

RNA interference (RNAi) is a naturally occurring cellular post-transcriptional gene regulation process that utilizes small double-stranded RNAs to trigger and guide gene silencing. By introducing synthetic RNA duplexes called small-interfering RNAs (siRNAs), we can harness the RNAi machinery for therapeutic gene control and the treatment of various diseases. The National Cancer Institute seeks partners to license or co-develop RNA, RNA-DNA, and DNA-RNA hybrid nanoparticles consisting of a DNA or RNA core with attached RNA or DNA hybrid duplexes.

Agonistic Human Monoclonal Antibodies against Death Receptor 4 (DR4)

The National Cancer Institute is seeking parties interested in licensing human monoclonal antibodies (mAbs) that bind to death receptor 4 ("DR4"). The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its functional receptors, DR4 and DR5, have been recognized as promising targets for cancer treatment.

Anti-SLAMF7 Chimeric Antigen Receptors

Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target Signaling Lymphocyte Activation Molecule F7 (SLAMF7) are strong therapeutic candidates for patients with Multiple Myeloma (MM). SLAMF7 is highly expressed on the malignant plasma cells that constitute MM. The expression of SLAMF7 by MM cells and lack of expression on nonhematologic cells makes SLAMF7 an attractive therapeutic target for MM. Researchers at the National Cancer Institute (NCI) have invented anti- SLAMF7 CAR constructs that allow genetically-modified T cells to express both the anti-SLAMF7 antibody and a suicide gene that allows T cells to specifically recognize and kill SLAMF7-expressing cells as well as allow for on-demand and reliable elimination of anti-SLAMF7 CAR T cells. NCI seeks licensing and/or co-development partners for this invention.

Nanoparticle delivery of lung cancer therapeutic

The National Cancer Institute seeks parties interested in licensing an improved treatment for non-small cell lung cancer based on inhalation of nano- and microparticle therapeutics.

Peptide Inhibitors for Viral Infections and as Anti-inflammatory Agents

IFN-gamma and IL-10 are cytokine signaling molecules that play fundamental roles in inflammation, cancer growth and autoimmune diseases.  Unfortunately, there are no specific inhibitors of IFN-gamma or IL-10 on the market to date. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop selective IL-10 and IFN-gamma peptide inhibitors.

Agonist Epitopes for the Development of a Human Papillomavirus (HPV) Therapeutic Vaccine

To date, there is no FDA-approved therapeutic vaccine for human papillomavirus (HPV). Researchers at the National Cancer Institute (NCI) have discovered agonist epitopes for the development of an HPV therapeutic vaccine. NCI is seeking parties interested in licensing and/or co-developing HPV agonist epitopes that enhance the activation of cytotoxic T lymphocytes (CTL) and lysis of human tumor cells.

Aryl Hydantoin Heterocycle Compounds that Target the Androgen Receptor for Prostate Cancer Treatment

Researchers at the National Cancer Institute (NCI) have developed aryl hydantoin heterocycles that target the androgen receptor (AR). NCI seeks research co-development partners and/or licensees to develop these compounds as therapeutics for prostate cancer. As these compounds consist of both AR agonists and antagonists, they may also be effective therapeutics for androgen dysfunctional disorders, such as androgen deficiency disorders or hyperandrogenism.

Methods for Producing Stem Cell-Like Memory T Cells for Use in T Cell-Based Immunotherapies

Researchers at the National Cancer Institute (NCI) seek research & co-development and/or licensees for a novel, ex vivo method by which stem cell-like memory T cells (Tscm) can be generated by stimulating naïve T cells in the presence of inhibitors of GSK-3beta, which are capable of activating the Wnt pathway. These Tscm cells, generated using GSK-3beta inhibitors, display enhanced survival and proliferation upon transfer, have multipotent capacity to generate all memory and effector T cell subsets, and show increased anti-tumor activity in a humanized mouse tumor model.

Therapeutic Immunotoxins with Increased Half-Life and Anti-Tumor Activity

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for mesothelin targeting Recombinant Immunotoxins (RITs). These RITs have been engineered by site specific modification with polyethylene glycol (PEG) to have an increased serum half-life, while maintaining high cytotoxicity and have greatly improved anti-tumor activity.

Pages