You are here

Share:

Search Technologies

Showing 21-40 of 62 results found

High Affinity Monoclonal Antibodies Targeting Glypican-2 for Treating Childhood Cancers

Cancer therapies that specifically target Glypican 2 (GPC2) are strong therapeutic candidates for pediatric patients with neuroblastoma and other GPC2 expressing cancers. The inventors at the National Cancer Institute (NCI) have developed and isolated two new antibodies that target GPC2 (CT3 and CT5) that are available for licensing and co-development.

Highly Soluble Pyrimido-Dione-Quinoline Compounds: Small Molecules that Stabilize and Activate p53 in Transformed Cells

Researchers at the National Cancer Institute (NCI) have developed an invention reporting the composition and function of a pyrimido-dione-quinoline that was found to inhibit HDM2’s ubiquitin ligase (E3) activity without accompanying genotoxicity. The current invention results in the stabilization of p53 in cells through the inhibition of its ubiquitin-mediated proteasomal degradation resulting in a robust p53 response in tumors. NCI researchers seek licensing and/or co-development partners for this invention.

Human Synovial Sarcoma Cell Line A2243

The National Cancer Institute (NCI) seeks parties interested in licensing a human synovial sarcoma cell line (A2243). This cell line is an excellent research tool to study synovial sarcoma with a focus on chromosome translocations.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

Improved Personalized Cancer Immunotherapy

The National Cancer Institute’s Surgery Branch seeks partners interested in collaborative research to co-develop adoptive transfer of tumor infiltrating leukocytes (TIL) for cancers other than melanoma.

Increased Therapeutic Effectiveness of PE-Based Immunotoxins

To improve the therapeutic effectiveness of PE-based immunotoxins through multiple rounds of drug administration, NIH inventors have sought to identify and remove the human B cell epitopes within PE. Previous work demonstrated that the removal of the murine B cell and T cell epitopes from PE reduced the immunogenicity of PE and resulted in immunotoxins with improved therapeutic activity. The National Cancer Institute's Laboratory of Molecular Biology seeks interested parties to co-develop and commercialize immunotoxins using toxin domains lacking human B cell epitopes.

Method of Neoantigen-Reactive T Cell Receptor (TCR) Isolation from Peripheral Blood of Cancer Patients

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a novel method for isolation and construction of neoantigen-reactive T-cell receptors (TCRs) from peripheral blood lymphocytes (PBL) of cancer patients. This method generates accurate scoring of single T cells from tumors, as well as facilitates identification and reconstruction of unknown TCRs for immunotherapy.

Module to Freeze and Store Frozen Tissue

Researchers at the National Cancer Institute (NCI) have developed an engineered storage unit for frozen tissue, that provides a permanent base on which to mount tissue frozen in OCT and an enclosure for storage. The unit provides for chain-of-custody labeling and acts as an insulating container to protect the specimen. Other elements include devices for freezing the tissue to the base, as well as a holder for the base to facilitate cryosectioning. Application of the storage system allows a frozen tissue specimen to be moved between storage and cryosectioning without loss of label, deformation of tissue, or thermal alterations.

Molecular Nanotags for Detection of Single Molecules

Researchers at the National Cancer Institute (NCI) developed novel molecular nanotags for single biological nanoparticle detection, resolution, and sorting, by flow cytometry. The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations to further advance this technology with extremely broad biomedical, biodefense, industrial, environmental, and other applications.

MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors

Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

Pages