You are here

Share:

Search Technologies

Showing 1-20 of 34 results found

BODIPY-FL Nilotinib (Tasigna) for Use in Cancer Research

The National Cancer Institute''s Laboratory of Cell Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize bodipy conjugated tyrosine kinase inhibitors that are currently used in the clinic for the treatment of CML or gastric cancers.

3D Image Rendering Software for Biological Tissues

The Frederick National Laboratory for Cancer Research seeks parties interested in collaborative research to co-develop software for the automatic 3-D visualization of biological image volumes.

High-throughput Assay to Identify New Cancer Drugs

The National Cancer Institute seeks parties interested in collaborative research to evaluate or commercialize a diagnostic tool that can identify new drugs that increase chromosome instability.

Optical Microscope Software for Breast Cancer Diagnosis

Researchers from NCI and Rudgers University developed  methods of detecting abnormal cells in a sample using the spatial position of one or more genes within the nucleus of a cell, as well as a kit for detecting abnormal cells using such methods. The invention also provides methods of identifying gene markers for abnormal cells using the spatial position of one or more genes within the nucleus of a cell. The National Cancer Institute seeks parties interested in collaborative research to co-develop diagnostic methods for detection of cancer using spatial genome organization.

Zirconium-89 PET Imaging Agent for Cancer

This technology is a new generation of rationally designed chelating agents that improve the complexation of Zirconium-89 for PET imaging of cancers.

Video Monitoring and Analysis System for Vivarium Cage Racks

This invention pertains to a system for continuous observation of rodents in home-cage environments with the specific aim to facilitate the quantification of activity levels and behavioral patterns for mice housed in a commercial ventilated cage rack.  The National Cancer Institute’s Radiation Biology Branch seeks partners interested in collaborative research to co-develop a video monitoring system for laboratory animals.

Software for Automated Generation of Density Maps

Available for licensing is computer software for the automated generation of density maps of macromolecular structures from a series of 2D digital micrographs of frozen hydrated specimens collected using an electron microscope equipped with an ultra-cooled computerized stage.

T-cell Receptors (TCRs) Specific for p53 Mutants

National Cancer Institute (NCI) researchers have isolated T-cell receptors (TCRs) reactive to the highly prevalent p53-Y220C and p53-R273C mutants. These TCRs can be used for a variety of therapeutic, diagnostic and research applications. NCI seeks licensing and/or co-development research collaborations for TCRs that recognize p53-Y220C and p53- R273C mutations, and methods for identifying p53 mutation-reactive T cell receptors.

Device to guide oxygen over cells for photo-oxidation

Device is used to guide a stream of oxygen or carbon dioxide over a dish of cells during fluorescence microscopy. Invention includes the 3D printing software to create the device. The device makes it possible to easily provide a steady source of oxygen or carbon dioxide to cells while operating a fluorescent microscope to oxidize fluorophores for later visualization in electron microscopy. NCI seeks commercial partners to license this technology.

Denoising of Dynamic Magnetic Resonance Spectroscopic Imaging Using Low Rank Approximations in the Kinetic Domain

Scientists at The National Cancer Institute (NCI) and The National Institute of Neurological Disorders and Stroke (NINDS) have invented a method of imaging glucose metabolism in vivo using MRI chemical shift imaging (CSI) experiments that relies on a simple, but robust and efficient, post-processing procedure by the higher dimensional analog of singular value decomposition, tensor decomposition. This new technology is denoising software for MRIs that significantly improves the measurement of low-intensity signals without the need for dynamic nuclear polarization (DNP). The scientists seek research co-development partners and/or licensees for their invention.

Pages