You are here

Share:

Search Technologies

Showing 1-20 of 310 results found

Method for HLA LOH Detection in Liquid Biopsies

The National Cancer Institute (NCI) seeks research co-development partners for a companion diagnostic (CDx) that detects human leukocyte antigen (HLA) loss-of-heterozygosity (LOH) and other biomarkers to predict efficacy of TCR-T cell adoptive transfer, immune checkpoint inhibition (ICI), tumor infiltrating lymphocytes (TIL), and other TCR-mediated immunotherapies.

Methods of Determining Homeostatic Perturbations

The Eunice Kennedy Shriver National Institute of Child Health and Human Development seeks research co-development partners and/or licensees to further develop and commercialize its methods of noninvasively and directly determining the absolute homeostatic state, metabolic activity, function, and viability of isolated cells, or tissues (ex vivo or in vivo), such as the Central Nervous System (CNS). The method uses Nuclear Magnetic Resonance or Magnetic Resonance Imaging measurements of the rate at which endogenous water exchanges across cell membranes.

Anti-Glypican 2 Chimeric Antigen Receptor (CAR) Containing CD28 Hinge And Transmembrane Domains For Treating Neuroblastoma

Chimeric antigen receptor (CAR) T cells that specifically target Glypican 2 (GPC2) are strong therapeutic candidates for patients with neuroblastoma and other GPC2-expressing cancers. The inventors at the National Cancer Institute (NCI) have developed a potent anti-GPC2 (CT3) CAR containing CD28 hinge and transmembrane domains (CT3.28H.BBζ) that is available for licensing and co-development.

Novel Small Molecule Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 (TDP1) for Treatment of Solid Tumors

Scientists at National Cancer Institute (NCI) Center for Cancer Research (CCR) identified selective tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors that may be used in combination with topoisomerase 1 (TOP1) inhibitors for synergistic treatment of solid tumors. NCI seeks research co-development partners and/or licensees for commercializing the TDP1 inhibitors as part of an anti-cancer therapy.

T Cell Receptors Targeting CDKN2A Mutations for Cancer Immunotherapy

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a collection of T-cell receptors (TCRs) that specifically target CDKN2A mutations. CDKN2A mutations are present in a myriad of cancers. Therefore, these TCRs may be used for engineering TCR-based therapies with therapeutic potential for a broad cancer patient population.

T Cell Receptors Targeting BRAF V600E Mutation for Cancer Immunotherapy

The NCI seeks parties interested in research co-development and/or licensing of TCRs targeting the BRAF V600E mutation. These TCRs are HLA-A*0301 restricted. The BRAF V600E mutation is common among cancer patients, giving the TCRs broad therapeutic potential in immunotherapy against multiple cancers.

Bacteriophage Based-Vaccine System

Scientists at the National Cancer Institute (NCI) developed an engineered bacteriophage lambda () vector for displaying antigens to be used as a vaccine in treatment of cancers and infectious diseases. The NCI seeks licensing and/or co-development research collaborations for further development of the Bacteriophage based-vaccine system.

T-cell Receptor Targeting Human Papillomavirus-16 E6 Oncoprotein

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a T-cell receptor (TCR) that confers high-avidity recognition of the HPV-specific oncoprotein E6. The TCR may be used in an adoptive cell therapy approach utilizing genetically engineered lymphocytes to treat HPV-positive malignancies.

PIM-Targeted PROTACs

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a series of PIM Kinase targeting PROTACS.

IgG4 Hinge Containing Nanobody-based CARs Targeting GPC3 for Treating Liver Cancer

Scientists at the National Cancer Institute (NCI) developed a potent chimeric antigen receptor (CAR) targeting glypican-3 (GPC3). GPC3 is a cell surface proteoglycan preferentially expressed on Hepatocellular Carcinoma (HCC). The specific HN3 nanobody-IgG4H-CD28TM CAR included in this invention was much more potent both in in vitro cell models and in vivo mouse models. The NCI seeks licensing and/or co-development research collaborations for further development of the anti-GPC3 CAR to treat liver cancer.

T-cell Receptor Targeting Human Papillomavirus-16 E7 Oncoprotein

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a T-cell receptor (TCR) that confers high-avidity recognition of the HPV-specific oncoprotein E7. The TCR may be used in an adoptive cell therapy approach utilizing genetically engineered lymphocytes to treat HPV-positive malignancies.

Tamperless Tensor Elastography Imaging

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks research co-development partners and/or licensees for the development of tamperless tensor elastography imaging in assessing disease (e.g., cancer), normal and abnormal developmental processes, degeneration and trauma in the brain and other soft tissues, and other applications.

Biomarker Analysis Software for High-Throughput Diagnostic Multiplex Data

Extracellular vesicles (EVs) are lipid spheres released from cells. EVs contain proteins that can serve as diagnostic biomarkers indicating the cell state at time of release. Improved detection and phenotyping of EVs and their protein cargo could lead to better cancer diagnostic and prognostic tests, as well as improved therapeutic uses. The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a software package that performs high-throughput multi-dimensional analysis of EV biomarkers.

Pages