You are here

Share:

Search Technologies

Showing 261-280 of 309 results found

Potassium Hydroxy Citrate Promotes Longevity and Efficacy of Anti-Tumor T cells for Adoptive Cell Therapy (ACT)

Adoptive cell therapy (ACT) using tumor-specific T cells leads to complete tumor regression in some cancer patients. However, limiting the efficacy of this therapy is that T cells become functionally exhausted and have short half-lives after adoptive transfer. Researchers at the National Cancer Institute (NCI) have discovered a novel method to generate long-lived memory tumor-specific T cells with enhanced tumor clearance and persistence upon in vivo transfer. NCI is seeking parties interested in licensing and/or co-developing potassium hydroxy citrate to promote longevity and efficacy of tumor-specific T cells.

PIM-Targeted PROTACs

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a series of PIM Kinase targeting PROTACS.

Devices for Improved Tissue Cryopreservation and Recovery

Researchers at the National Eye Institute (NEI), have developed a cryopreservation and cell recovery system designed specifically for the efficient cryopreservation, transportation and subsequent thawing of monolayers and tissues on a substrate. This closed cryopreservation/defrost system allows for sterility in addition to increased viability, recovery and safety of tissues that can be used for in vitro culture or surgical transplantation.

Peptide Mimetic Ligands of Polo-like Kinase 1 Polo Box Domain

Researchers at the National Cancer Institute (NCI) have developed peptidomimetic inhibitors that disrupt Polo-like kinase 1 (Plk1)-mediated protein interactions by targeting polo-box domain (PBD). The compounds are designed to selectively cause mitotic arrest in cancer cells with abnormal Plk1 expression. Researchers seek licensing and/or co-development research collaborations to further develop the inhibitors.

Mitotic Figures Electronic Counting Application for Surgical Pathology

National Cancer Institute (NCI) researchers have developed a novel software tool for uniform recording of Mitotic Figure (MF) counts via conventional and/or digital microscopy. With this technology, diagnostic centers can standardize electronic recording, summation, and transcription of clinical data during surgical pathology examination. NCI seeks licensing partners to further develop this application for use in diagnosis and detection of malignant cancers.

T cell Receptors Which Recognize Mutated EGFR

Researchers at the National Cancer Institute (NCI) have isolated T cell receptors (TCRs) that target specific mutations in the epidermal growth factor receptor (EGFR). The mutated protein recognized by these TCRs is frequently expressed in non-small cell lung cancer (NSCLC). These TCRs can be used for a variety of therapeutic applications, including engineered adoptive cell immunotherapy. Researchers at the NCI seek licensing and/or co-development research collaborations for these novel T cell receptors that recognize EGFR mutations.

Polymeric Delivery Platform for Therapeutics

The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for a polymeric drug delivery platform that targets scavenger receptor A1 (SR-A1), a receptor highly expressed in macrophages, monocytes, mast cells, dendritic cells (myeloid lineages), and endothelial cells. The platform delivers various immunomodulatory therapeutic cargo including small molecule drugs, therapeutic peptides, and vaccines, to the lymphatic system and myeloid/antigen presenting cell (APC) sub-populations.

Novel Regulatory B cells for Treatment of Cancer and Autoimmune Disease

Cancer cells have been found to directly activate resting B cells to form suppressive regulatory B cells (tBregs) and utilize them to evade immune surveillance and mediate metastasis. tBregs directly inhibit CD4+ and CD8+ T cell activity in a cell contact-dependent manner, induce FoxP3+ T cell activity, and promote Treg-dependent metastasis. The National Institute on Aging's Immunotherapeutics Unit, is seeking parties interested in licensing or co-development of regulatory B cells to control autoimmune diseases and strategies that inactivate tBregs to control cancer immune escape. 

Method of Neoantigen-Reactive T Cell Receptor (TCR) Isolation from Peripheral Blood of Cancer Patients

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a novel method for isolation and construction of neoantigen-reactive T-cell receptors (TCRs) from peripheral blood lymphocytes (PBL) of cancer patients. This method generates accurate scoring of single T cells from tumors, as well as facilitates identification and reconstruction of unknown TCRs for immunotherapy.

A Gene-Based Prognostic for Hepatocellular Carcinoma Patient Response to Adjuvant Transcatheter Arterial Chemoembolization

The gold standard of care for hepatocellular carcinoma patients with intermediate- to locally advanced tumors is transcatheter arterial chemoembolization (TACE), a procedure whereby the tumor is targeted both with local chemotherapy and restriction of local blood supply. NCI scientists have identified a 14-gene signature predictive of response to TACE, and NCI seeks licensees or co-development partners to develop the technology toward commercialization.

EGFRvIII Antibodies for the Treatment of Human Cancer

Researchers at the National Cancer Institute (NCI) have isolated seven monoclonal antibodies that bind to the human epidermal growth factor receptor variant III (EGFRvIII) but not wildtype EGFR. The NCI seeks research co-development partners or licensees for monoclonal antibodies that specifically target cancer-expressed EGFR.

CD206 Small Molecule Modulators, Their Use and Methods for Preparation

Researchers at the National Cancer Institute (NCI) have discovered a small molecule that binds to CD206 and activates M2-like tumor associated macrophages resulting in innate and adaptive anti-tumor responses. NCI seeks research co-development or licensees for CD206 small molecule modulators as a therapeutic for CD206-expressing cancers (such as pancreatic, sarcoma, head and neck, lung, gastric, triple negative breast, renal cell, colorectal cancer, melanoma).

Biomarker Analysis Software for High-Throughput Diagnostic Multiplex Data

Extracellular vesicles (EVs) are lipid spheres released from cells. EVs contain proteins that can serve as diagnostic biomarkers indicating the cell state at time of release. Improved detection and phenotyping of EVs and their protein cargo could lead to better cancer diagnostic and prognostic tests, as well as improved therapeutic uses. The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a software package that performs high-throughput multi-dimensional analysis of EV biomarkers.

GTF2I Mutations as a Genetic Marker for Prognosis of Thymic Malignancies

Despite the growing number of biomarkers that are used for diagnosing and treating carcinomas in general, cancers of the thymus are still diagnosed, stratified and treated by a costly combination of histology, surgery and radiological procedures.  The lack of qualified biomarkers associated with thymomas and thymic carcinomas has also hampered the development of targeted therapies. The National Cancer Institute seeks partners interested in licensing or collaborative research to co-develop a prognostic PCR based test for thymic malignancies.

A Novel Genetically Encoded Inhibitor of Hippo Signaling Pathway to Study YAP1/TAZ-TEAD Dependent Events in Cancer

The Hippo signaling pathway is one of the most frequently altered pathways in human cancer. Researchers at the National Cancer Institute (NCI) have developed a genetically encoded peptide inhibitor of the Hippo signaling pathway members YAP1/TAZ-TEAD, to dissect and study the specific TEAD-downstream regulatory gene expression networks of cell proliferation, tissue homeostasis, and stem cell functions in different cell types and pathologies. The DNA construct encoding this inhibitor may be delivered to cells using lentivirus, adenovirus, or adeno-associated virus, and is a valuable research tool. NCI seeks licensees for this peptide inhibitor and the encoding DNA construct.

Pages