You are here

Share:

Search Technologies

Showing 1-20 of 314 results found

IgG4 Hinge Containing Chimeric Antigen Receptors Targeting Glypican-1 For Treating Solid Tumors

Researchers at the National Cancer Institute have developed a glypican-1 (GPC1) chimeric antigen receptor (CAR)-T cells using short immunoglobin subclass 4 (IgG4) hinge sequences that are highly potent against GPC1-expressing tumors. NCI seeks research co-development partners and/or licensees to advance the development of GPC1-IgG4 hinge CARs for the treatment of pancreatic cancer and other GPC1-expressing tumors.

Monoclonal Antibodies and Immunoconjugates Directed to the Non-ShedPortion (“Stalk”) of Mesothelin are Excellent Candidates for Developing Therapeutic Agents

Antibodies that specifically recognize and bind to the unshed portion (“stalk”) of human mesothelin are strong therapeutic candidates because they maintain contact with the cancer cell for a longer duration than other anti-mesothelin antibodies that are currently available. The National Cancer Institute (NCI) has developed such antibodies that specifically recognize and bind to the stalk of human mesothelin with high affinity. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

Method for HLA LOH Detection in Liquid Biopsies

The National Cancer Institute (NCI) seeks research co-development partners for a companion diagnostic (CDx) that detects human leukocyte antigen (HLA) loss-of-heterozygosity (LOH) and other biomarkers to predict efficacy of TCR-T cell adoptive transfer, immune checkpoint inhibition (ICI), tumor infiltrating lymphocytes (TIL), and other TCR-mediated immunotherapies.

Tethered Interleukin-15 (IL-15)/IL-21 to Enhance T Cells for Cellular Therapy

Researchers at the National Cancer Institute (NCI) have developed a method to improve the function of therapeutic engineered T cells used for Adoptive T Cell Therapy (ACT) for various cancers and diseases through the co-expression of Interleukin-15 (IL-15) and IL-21 by a flexible linker to the cell membrane. Researchers at the NCI seek licensing for this invention.

T Cell Receptor Targeting CD22 for the Treatment of Lymphomas and Leukemias

The National Cancer Institute (NCI) seeks licensees and/or collaborators for a T-cell receptor (TCR) that specifically targets CD22 in the context of Human Leukocyte Antigen (HLA)-A*02:01 in B-lymphoid malignancies such as non-Hodgkin’s lymphoma, chronic lymphocytic leukemia, and acute lymphoblastic leukemia. The TCR is being developed as a cellular immunotherapy for the treatment of lymphomas and leukemias.

Method for Targeted Therapeutic Delivery of Proteins into Cells

The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

In silico design of RNA nanoparticles

The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop RNA nanostructures using computational and synthetic methods.

Tumor Tissues Harboring Mutations in cAMP-specific Phosphodiesterases

The National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize clinical samples with genetic mutations associated with endocrine tumors.

Cancer Inhibitors Isolated from an African Plant

The National Cancer Institute's Molecular Targets Development Program is seeking parties interested in collaborative research to further develop, evaluate, or commercialize cancer inhibitors isolated from the African plant Phyllanthus englerii. The technology is also available for exclusive or non-exclusive licensing.

Methods for Single Cell Analysis of the Epigenome, Transcriptome, and Genome

There are currently no methodologies that allow for epigenome, genome and transcriptome analysis all in a single cell. In addition, there are currently no methodologies that permit repeating the results of these analyses on the same single cells. Scientists at the National Cancer Institute (NCI) Laboratory of Cellular Oncology have developed a method for generating a “reusable” single cell that allows for repeated experiments on the same cell. Utilizing this methodology epigenomic, genomic, and transcriptomic analysis can be performed on the same cell. NCI seeks parties to license or co-develop the technology through research collaborations.

RNA/DNA Nanoparticles as Cancer Therapeutics

The technology is directed to the use of single-stranded RNA overhangs or toeholds of varying lengths (< 12 nucleotides) contained in nucleic acid-based nanoparticles which trigger the association of these nanoparticles and activates multiple functionalities such as gene silencing and/or cell-specific targeting. The use of RNA toeholds is superior to that of DNA toeholds in that it allows for smaller nanoparticles (fewer nucleotides for the toeholds) resulting in greater chemical stability, less immunogenic and higher yield of production. The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for use of RNA overhangs or toeholds in nucleic acid nanoparticles.

Brain endothelial reporter cells

The National Cancer Institute seeks parties interested in co-development of safe and effective TEM5 agonists and/or antagonists that modulate WNT signaling.

Pages