You are here

Share:

Search Technologies

Showing 1-7 of 7 results found

New Insect Sf9-ET Cell Line for Determining Baculovirus Titers

The National Cancer Institute (NCI) seeks licensing partners for a novel modified insect cell line, Sf9-ET, that can quickly and efficiently determine baculovirus titers during the expression of recombinant proteins from a baculovirus-based protein expression system.

Cell Line for Production of Recombinant Human Tissue Inhibitor of Metalloproteinase-2

Recombinant human tissue inhibitors of metalloproteinases (rhTIMP-2) have been shown to suppress tumor growth and tumor-associated angiogenesis. NCI Radiation Oncology Branch (ROB) researchers have developed a unique HEK-293F cell line which stably expresses rhTIMP-2, increasing the production of TIMP-2 to quantities sufficient to be used for testing and development as a therapeutic for various cancers, ischemic diseases (myocardial infarct and cerebrovascular infarct), and neurodegenerative diseases.

SMAD3 Reporter Mouse for Assessing TGF-ß/Activin Pathway Activation

Researchers at the National Cancer Institute (NCI) developed a novel mouse for the detection of TGF-ß signaling. This mouse provides the opportunity to study TGF-ß signaling in vivo and may be a useful model for preclinical pharmacology studies. The NCI seeks licensees for the TGF-ß reporter mouse.

Exo-Clean Technology for Purifying Extracellular Vesicle Preparations from Contaminants

Researchers at the National Cancer Institute (NCI) developed a novel biophysical technique to purify extracellular vesicles (EVs) from contaminants such as proteins and unbound labels. The NCI seeks licensees and/or co-development research collaborations to further advance this technology for EV-based biomarkers and therapeutics to treat a wide range of diseases.

Optical Configuration Methods for Spectral Scatter Flow Cytometry

Scientists at the National Cancer Institute (NCI) seek licensees or co-development partners for a multispectral detection method capable of discriminating different Molecular NanoTag components. The capacity to discriminate further increases the sensitivity of detection for NanoTag molecules. Adaptations of this technology could also apply to incorporate spectral scatter detection in other cytometric and microfluidic systems.