You are here

Share:

Search Technologies

Showing 1-20 of 65 results found

Zirconium-89 PET Imaging Agent for Cancer

This technology is a new generation of rationally designed chelating agents that improve the complexation of Zirconium-89 for PET imaging of cancers.

HIV-1 IN Mutant in a Single Round Vector

The National Cancer Institute (NCI) seeks potential non-exclusive licensees for a collection of mutated single-round vectors for testing of potential Integrase Strand Transfer Inhibitor (INSTI) and reverse transcriptase (RT) inhibitor drugs.

A Novel Genetically Encoded Inhibitor of Hippo Signaling Pathway to Study YAP1/TAZ-TEAD Dependent Events in Cancer

The Hippo signaling pathway is one of the most frequently altered pathways in human cancer. Researchers at the National Cancer Institute (NCI) have developed a genetically encoded peptide inhibitor of the Hippo signaling pathway members YAP1/TAZ-TEAD, to dissect and study the specific TEAD-downstream regulatory gene expression networks of cell proliferation, tissue homeostasis, and stem cell functions in different cell types and pathologies. The DNA construct encoding this inhibitor may be delivered to cells using lentivirus, adenovirus, or adeno-associated virus, and is a valuable research tool. NCI seeks licensees for this peptide inhibitor and the encoding DNA construct.

CytoSig: A Software Platform for Predicting Cytokine Signaling Activities, Target Discovery, and Clinical Decision Support System (CDSS) from Transcriptomic Profiles

Scientists at the National Cancer Institute (NCI) have developed the Cytokine Signaling Analyzer (CytoSig), a software-based platform that provides both a database of target genes modulated by cytokines and a predictive model of cytokine signaling cascades from transcriptomic profiles. NCI seeks collaborators or licensees to advance the development of CytoSig for research, target discovery, or as a Clinical Decision Support System (CDSS).

Assay to Screen Anti-metastatic Drugs

The National Cancer Institute seeks licensees for a model used to study molecular mechanisms and/or signaling pathways involved in tumorigenesis, angiogenesis and metastasis of breast cancer and its response to therapy.

Brain endothelial reporter cells

The National Cancer Institute seeks parties interested in co-development of safe and effective TEM5 agonists and/or antagonists that modulate WNT signaling.

Target for Anti-Tumor Immune Responses

The Surgery Branch of the National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to carry out genotypic as well as phenotypic analysis of the 888 mel cell line in order to better understand the nature of tumor cells that respond to therapy.

Metastatic ovarian cancer mouse models and cell lines for preclinical studies

NCI's Center for Advanced Preclinical Research (CAPR) has developed a Serous Epithelial Ovarian Cancer (SEOC) genetically engineered mouse model (GEM), GEM-derived SEOC orthotopic mouse model, and biological materials derived therefrom, with several key histopathologic, immunophenotypical, and genetic features of human SEOC. NCI CAPR seeks licensees for this technology.

A Rapid Method of Isolating Neoantigen-specific T Cell Receptor Sequences

Recent research has demonstrated that neoantigen-specific T-cell receptors (TCRs) can be isolated from a cancer patient’s lymphocytes. These TCRs may be used to engineer populations of tumor-reactive T cells for cancer immunotherapies. Obtaining sequences of these functional TCRs is a critical initial step in preparing this type of personalized cancer treatment; however, current methods are time-consuming and labor-intensive. Scientists at the National Cancer Institute (NCI) have developed a rapid and robust method of isolating the sequences of mutation-specific TCRs to alleviate these issues; they seek licensing and/or co-development research collaborations for the development of a method for isolating the sequences of tumor-reactive TCRs. For collaboration opportunities, please contact Steven A. Rosenberg, M.D., Ph.D. at sar@nih.gov.

A Murine Model of Inflammation Based on Chronic Expression of Interferon-Gamma

The National Cancer Institute (NCI) has a novel mouse model of autoimmunity based on chronic interferon-gamma expression (ARE-Del). This mouse can be used as an in vivo model to study female-biased autoimmune diseases, including: Systemic Lupus Erythematosus, Primary Biliary Cholangitis, and Ovarian Failure Syndrome.

High-throughput Assay to Identify New Cancer Drugs

The National Cancer Institute seeks parties interested in collaborative research to evaluate or commercialize a diagnostic tool that can identify new drugs that increase chromosome instability.

Pages