You are here

Share:

Search Technologies

Showing 21-40 of 65 results found

Transgenic Mouse Model of Human Basal Triple Negative Breast Cancer

NIH scientists created and characterized an excellent mouse model for TNBC that shares important molecular characteristics of human TNBC making it highly useful for preclinical testing of drugs and novel therapies. This model may provide a valuable means of identifying new drugs and therapies that could be translated to human clinical trials.The NCI seeks parties interested in licensing this mouse model of prostate and triple-negative breast cancers to study cancer biology and for preclinical testing.

Mouse Xenograft Model for Mesothelioma

The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

Knockout and Conditional Knockout Mice-GPR116

Pulmonary surfactant plays a critical role in preventing alveolar collapse by decreasing surface tension at the alveolar air-liquid interface. Surfactant deficiency contributes to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), common disorders that can afflict patients of all ages and carry a mortality rate greater than 25%. Excess surfactant leads to pulmonary alveolar proteinosis. NCI investigators created a G-protein coupled receptor GPR116 mutant mouse model and showed that GPR116 plays a previously unexpected, essential role in maintaining normal surfactant levels in the lung. The National Cancer Institute seeks partners interested in collaborative research to license surfactant modulating agents for the treatment of surfactant related lung disorders.

Novel Fusion Proteins for HIV Vaccine

The National Cancer Institute’s Cancer and Inflammation Program seeks parties to license gp120 and CD4-induced antibody fusion proteins for use in an HIV vaccine.

Novel Fixative for Improved Biomolecule Quality from Paraffin-Embedded Tissue

Researchers in the National Cancer Institute’s Laboratory of Pathology have developed an improved tissue fixative solution that is formaldehyde-free. This novel fixative, BE70, significantly improves DNA, RNA, and protein biomolecule integrity in histological samples compared to traditional fixatives. Additionally, BE70 is compatible with current protocols and does not alter tissue processing. NCI seeks partners to license this technology.

Device to guide oxygen over cells for photo-oxidation

Device is used to guide a stream of oxygen or carbon dioxide over a dish of cells during fluorescence microscopy. Invention includes the 3D printing software to create the device. The device makes it possible to easily provide a steady source of oxygen or carbon dioxide to cells while operating a fluorescent microscope to oxidize fluorophores for later visualization in electron microscopy. NCI seeks commercial partners to license this technology.

A549 Cells: Lung Carcinoma Cell Line for Adenovirus

Scientists at the National Cancer Institute have developed a cell line designated A549 that was derived from explanted cultures of human lung cancer tissue. The A549 cell line has been tested under the guidance of the United States Food and Drug Administration (FDA) so, under current Good Manufacturing Practices (GMP), these cells may be suitable for use in manufacturing constructs for use in clinical trials. The National Cancer Institute seeks parties to non-exclusively license this research material.

Genetically Engineered Mouse-Derived Allograft for Preclinical Studies of Metastatic Melanoma

Researchers at NCI have developed a means of more closely simulating in mouse models both melanoma cancer itself and the resulting physiological an immunological response by creating a genetically engineered mice (GEM)-derived allograft (GDA).  This allograft both resembles human-like melanoma and has features that will stimulate a normal immunological response in the mouse.

Optical Microscope Software for Breast Cancer Diagnosis

Researchers from NCI and Rudgers University developed  methods of detecting abnormal cells in a sample using the spatial position of one or more genes within the nucleus of a cell, as well as a kit for detecting abnormal cells using such methods. The invention also provides methods of identifying gene markers for abnormal cells using the spatial position of one or more genes within the nucleus of a cell. The National Cancer Institute seeks parties interested in collaborative research to co-develop diagnostic methods for detection of cancer using spatial genome organization.

BODIPY-FL Nilotinib (Tasigna) for Use in Cancer Research

The National Cancer Institute''s Laboratory of Cell Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize bodipy conjugated tyrosine kinase inhibitors that are currently used in the clinic for the treatment of CML or gastric cancers.

Pages