You are here

Share:

Search Technologies

Showing 21-25 of 25 results found

Bioluminescent Bladder Cancer Cell Line for Tracking Cancer Progression

Researchers at the National Cancer Institute (NCI) have developed a bioluminescent MB49-luciferase bladder cancer cell line that can be used in preclinical studies to evaluate anti-cancer agents in bladder cancer. NCI seeks parties to non-exclusively license this research material.

A Novel Transgenic Zebrafish Line Reporting Dynamic Epigenetic Changes

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks licensees for a novel “EpiTag” epigenetic reporter transgenic zebrafish line that provides a versatile and powerful whole-animal platform for visualizing and assessing the effects of mutants, experimental treatments, or chemical compounds targeting epigenetic regulation as well as studying epigenetic regulation of global- or tissue-specific gene expression during development.

Methods of Producing T-cell Populations Using P38 MAPK Inhibitors

Adoptive cell therapy (ACT) uses cancer reactive T-cells to effectively treat cancer patients. Producing many persistent T-cells is critical for successful treatments. Researchers at the National Cancer Institute (NCI) have developed a method of producing larger populations of minimally-differentiated T-cells. NCI seeks licensing and/or co-development research collaborations to further develop, evaluate, and/or commercialize this novel method of producing effective T-cell populations using p38 mitogen-activated protein kinase (MAPK) inhibitors.

A Novel Genetically Encoded Inhibitor of Hippo Signaling Pathway to Study YAP1/TAZ-TEAD Dependent Events in Cancer

The Hippo signaling pathway is one of the most frequently altered pathways in human cancer. Researchers at the National Cancer Institute (NCI) have developed a genetically encoded peptide inhibitor of the Hippo signaling pathway members YAP1/TAZ-TEAD, to dissect and study the specific TEAD-downstream regulatory gene expression networks of cell proliferation, tissue homeostasis, and stem cell functions in different cell types and pathologies. The DNA construct encoding this inhibitor may be delivered to cells using lentivirus, adenovirus, or adeno-associated virus, and is a valuable research tool. NCI seeks licensees for this peptide inhibitor and the encoding DNA construct.

Pages