You are here

Share:

Search Technologies

Showing 1-20 of 22 results found

A New Class of Stable Heptamethine Cyanine Fluorophores and Biomedical Applications Thereof

Researchers at the National Cancer Institute (NCI) have developed an improved class of heptamethine cyanine fluorophore dyes useful for imaging applications in the near-IR range (750-850 nm). A new chemical reaction has been developed that provides easy access to novel molecules with improved properties. Specifically, the dyes display greater resistance to thiol nucleophiles, and are more robust while maintaining excellent optical properties. The dyes have been successfully employed in various in vivo imaging applications and in vitro labeling and microscopy applications. The NCI seek co-development or licensees to develop them as targetable agents for optical-guided surgical interventions.

A Rapid Method of Isolating Neoantigen-specific T Cell Receptor Sequences

Recent research has demonstrated that neoantigen-specific T-cell receptors (TCRs) can be isolated from a cancer patient’s lymphocytes. These TCRs may be used to engineer populations of tumor-reactive T cells for cancer immunotherapies. Obtaining sequences of these functional TCRs is a critical initial step in preparing this type of personalized cancer treatment; however, current methods are time-consuming and labor-intensive. Scientists at the National Cancer Institute (NCI) have developed a rapid and robust method of isolating the sequences of mutation-specific TCRs to alleviate these issues; they seek licensing and/or co-development research collaborations for the development of a method for isolating the sequences of tumor-reactive TCRs. For collaboration opportunities, please contact Steven A. Rosenberg, M.D., Ph.D. at sar@nih.gov.

Assay to Screen Anti-metastatic Drugs

The National Cancer Institute seeks licensees for a model used to study molecular mechanisms and/or signaling pathways involved in tumorigenesis, angiogenesis and metastasis of breast cancer and its response to therapy.

Bioluminescent Bladder Cancer Cell Line for Tracking Cancer Progression

Researchers at the National Cancer Institute (NCI) have developed a bioluminescent MB49-luciferase bladder cancer cell line that can be used in preclinical studies to evaluate anti-cancer agents in bladder cancer. NCI seeks parties to non-exclusively license this research material.

Cell Line for Production of Recombinant Human Tissue Inhibitor of Metalloproteinase-2

Recombinant human tissue inhibitors of metalloproteinases (rhTIMP-2) have been shown to suppress tumor growth and tumor-associated angiogenesis. NCI Radiation Oncology Branch (ROB) researchers have developed a unique HEK-293F cell line which stably expresses rhTIMP-2, increasing the production of TIMP-2 to quantities sufficient to be used for testing and development as a therapeutic for various cancers, ischemic diseases (myocardial infarct and cerebrovascular infarct), and neurodegenerative diseases.

Cell Lines Expressing Nuclear and/or Mitochondrial RNAse H1

The National Institute of Child Health & Human Development (NICHD), Program in Genomics of Differentiation, seeks interested parties to further co-develop small molecule inhibitors of RNase H1, especially in regards to genome instability, transcription, and translation.

Establishment of Induced Pluripotent Stem Cells (iPSC) from the Thirteen-lined Ground Squirrel

Hibernation in mammals is a seasonal state of metabolic suppression and dormancy characterized by a decrease in body temperature to survive extreme environmental stresses. A new Induced Pluripotent Stem Cell (iPSC) line has been established from the neural precursor cells of wild type thirteen-lined ground squirrel (Spermophilus tridecemlineatus), a small mammalian hibernator with unique metabolic adaptations for coping with cold and restricted food supply. This ground squirrel iPSC line can be differentiated into many different cell types for hibernation studies, disease modeling, and drug screening for neuronal injuries or other diseases.

Knockout and Conditional Knockout Mice-GPR116

Pulmonary surfactant plays a critical role in preventing alveolar collapse by decreasing surface tension at the alveolar air-liquid interface. Surfactant deficiency contributes to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), common disorders that can afflict patients of all ages and carry a mortality rate greater than 25%. Excess surfactant leads to pulmonary alveolar proteinosis. NCI investigators created a G-protein coupled receptor GPR116 mutant mouse model and showed that GPR116 plays a previously unexpected, essential role in maintaining normal surfactant levels in the lung. The National Cancer Institute seeks partners interested in collaborative research to license surfactant modulating agents for the treatment of surfactant related lung disorders.

Metastatic ovarian cancer mouse models and cell lines for preclinical studies

NCI's Center for Advanced Preclinical Research (CAPR) has developed a Serous Epithelial Ovarian Cancer (SEOC) genetically engineered mouse model (GEM), GEM-derived SEOC orthotopic mouse model, and biological materials derived therefrom, with several key histopathologic, immunophenotypical, and genetic features of human SEOC. NCI CAPR seeks licensees for this technology.

Method for Generating Pluripotent and Multipotent Cells

This technology represents a safe yet highly efficient strategy for somatic cell reprogramming, and has broad applicability for basic research, disease modeling, and regenerative medicine.

Methods of Producing Effective T-cell Populations Using Akt Inhibitors

Adoptive cell therapy uses cancer reactive T-cells to effectively treat cancer patients. Producing many persistent T-cells is critical for successful treatments. Researchers at the NCI seek licensing and/or co-development research collaborations for a novel method of producing effective T-cell populations using Akt inhibitors.

Mouse Xenograft Model for Mesothelioma

The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

Murine metastatic pancreatic adenocarcinoma cell lines

Researchers at the National Cancer Institute (NCI) developed orthotopic allograft models for pancreatic cancer that utilize cells or tumor fragments implanted into the cancer-free pancreata of recipient immunocompetent mice. NCI seeks licensees to commercialize this invention.

Niclosamide for Treating Adrenocortical Cancer (ACC)

Researchers at the NCI have developed a novel treatment for adrenocortical cancer (ACC) by repositioning the drug niclosamide. New treatments for ACC can help patients with this rare and aggressive disease, where the current standard of care involves highly toxic options. The NCI seeks parties to license this method of treating adrenocortical cancer using niclosamide.

Non-invasive Methods for Characterizing Adrenocortical Tumors

Researchers at the NCI developed a non-invasive method for distinguishing benign from malignant adrenocortical tumors using urine samples. The NCI seeks parties to co-develop a non-invasive, diagnostic method of distinguishing between benign and malignant adrenocortical tumors through the analysis of metabolites using urine samples.

Novel Fixative for Improved Biomolecule Quality from Paraffin-Embedded Tissue

Researchers in the National Cancer Institute’s Laboratory of Pathology have developed an improved tissue fixative solution that is formaldehyde-free. This novel fixative, BE70, significantly improves DNA, RNA, and protein biomolecule integrity in histological samples compared to traditional fixatives. Additionally, BE70 is compatible with current protocols and does not alter tissue processing. NCI seeks partners to license this technology.

Pages