You are here

Share:

Search Technologies

Showing 1-16 of 16 results found

BODIPY-FL Nilotinib (Tasigna) for Use in Cancer Research

The National Cancer Institute''s Laboratory of Cell Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize bodipy conjugated tyrosine kinase inhibitors that are currently used in the clinic for the treatment of CML or gastric cancers.

Device for Growing Mammalian Cells on EM Grids

A device used to hold transmission electron microscopy grids that allows adherent mammalian cells to grow on and the 3D printing software to create the device, which the NCI seeks to license.

High-throughput Assay to Identify New Cancer Drugs

The National Cancer Institute seeks parties interested in collaborative research to evaluate or commercialize a diagnostic tool that can identify new drugs that increase chromosome instability.

Method and Device for Selectively Labeling RNA

The National Cancer Institute's Structure Biophysics Lab seeks partners interested in licensing or co-developing a technology to site-specifically label RNA.

New Insect Sf9-ET Cell Line for Determining Baculovirus Titers

The National Cancer Institute (NCI) seeks licensing partners for a novel modified insect cell line, Sf9-ET, that can quickly and efficiently determine baculovirus titers during the expression of recombinant proteins from a baculovirus-based protein expression system.

Optical Microscope Software for Breast Cancer Diagnosis

Researchers from NCI and Rudgers University developed  methods of detecting abnormal cells in a sample using the spatial position of one or more genes within the nucleus of a cell, as well as a kit for detecting abnormal cells using such methods. The invention also provides methods of identifying gene markers for abnormal cells using the spatial position of one or more genes within the nucleus of a cell. The National Cancer Institute seeks parties interested in collaborative research to co-develop diagnostic methods for detection of cancer using spatial genome organization.

Zirconium-89 PET Imaging Agent for Cancer

This technology is a new generation of rationally designed chelating agents that improve the complexation of Zirconium-89 for PET imaging of cancers.