You are here

Share:

Search Technologies

Showing 41-60 of 77 results found

A Rapid Method of Isolating Neoantigen-specific T Cell Receptor Sequences

Recent research has demonstrated that neoantigen-specific T-cell receptors (TCRs) can be isolated from a cancer patient’s lymphocytes. These TCRs may be used to engineer populations of tumor-reactive T cells for cancer immunotherapies. Obtaining sequences of these functional TCRs is a critical initial step in preparing this type of personalized cancer treatment; however, current methods are time-consuming and labor-intensive. Scientists at the National Cancer Institute (NCI) have developed a rapid and robust method of isolating the sequences of mutation-specific TCRs to alleviate these issues; they seek licensing and/or co-development research collaborations for the development of a method for isolating the sequences of tumor-reactive TCRs. For collaboration opportunities, please contact Steven A. Rosenberg, M.D., Ph.D. at sar@nih.gov.

Device for Growing Mammalian Cells on EM Grids

A device used to hold transmission electron microscopy grids that allows adherent mammalian cells to grow on and the 3D printing software to create the device, which the NCI seeks to license.

Genetically Engineered Mouse-Derived Allograft for Preclinical Studies of Metastatic Melanoma

Researchers at NCI have developed a means of more closely simulating in mouse models both melanoma cancer itself and the resulting physiological an immunological response by creating a genetically engineered mice (GEM)-derived allograft (GDA).  This allograft both resembles human-like melanoma and has features that will stimulate a normal immunological response in the mouse.

A549 Cells: Lung Carcinoma Cell Line for Adenovirus

Scientists at the National Cancer Institute have developed a cell line designated A549 that was derived from explanted cultures of human lung cancer tissue. The A549 cell line has been tested under the guidance of the United States Food and Drug Administration (FDA) so, under current Good Manufacturing Practices (GMP), these cells may be suitable for use in manufacturing constructs for use in clinical trials. The National Cancer Institute seeks parties to non-exclusively license this research material.

Device to guide oxygen over cells for photo-oxidation

Device is used to guide a stream of oxygen or carbon dioxide over a dish of cells during fluorescence microscopy. Invention includes the 3D printing software to create the device. The device makes it possible to easily provide a steady source of oxygen or carbon dioxide to cells while operating a fluorescent microscope to oxidize fluorophores for later visualization in electron microscopy. NCI seeks commercial partners to license this technology.

Novel Fixative for Improved Biomolecule Quality from Paraffin-Embedded Tissue

Researchers in the National Cancer Institute’s Laboratory of Pathology have developed an improved tissue fixative solution that is formaldehyde-free. This novel fixative, BE70, significantly improves DNA, RNA, and protein biomolecule integrity in histological samples compared to traditional fixatives. Additionally, BE70 is compatible with current protocols and does not alter tissue processing. NCI seeks partners to license this technology.

Mouse Xenograft Model for Mesothelioma

The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

Optical Microscope Software for Breast Cancer Diagnosis

Researchers from NCI and Rudgers University developed  methods of detecting abnormal cells in a sample using the spatial position of one or more genes within the nucleus of a cell, as well as a kit for detecting abnormal cells using such methods. The invention also provides methods of identifying gene markers for abnormal cells using the spatial position of one or more genes within the nucleus of a cell. The National Cancer Institute seeks parties interested in collaborative research to co-develop diagnostic methods for detection of cancer using spatial genome organization.

Knockout and Conditional Knockout Mice-GPR116

Pulmonary surfactant plays a critical role in preventing alveolar collapse by decreasing surface tension at the alveolar air-liquid interface. Surfactant deficiency contributes to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), common disorders that can afflict patients of all ages and carry a mortality rate greater than 25%. Excess surfactant leads to pulmonary alveolar proteinosis. NCI investigators created a G-protein coupled receptor GPR116 mutant mouse model and showed that GPR116 plays a previously unexpected, essential role in maintaining normal surfactant levels in the lung. The National Cancer Institute seeks partners interested in collaborative research to license surfactant modulating agents for the treatment of surfactant related lung disorders.

Cell Lines Expressing Nuclear and/or Mitochondrial RNAse H1

The National Institute of Child Health & Human Development (NICHD), Program in Genomics of Differentiation, seeks interested parties to further co-develop small molecule inhibitors of RNase H1, especially in regards to genome instability, transcription, and translation.

Novel Fusion Proteins for HIV Vaccine

The National Cancer Institute’s Cancer and Inflammation Program seeks parties to license gp120 and CD4-induced antibody fusion proteins for use in an HIV vaccine.

Zirconium-89 PET Imaging Agent for Cancer

This technology is a new generation of rationally designed chelating agents that improve the complexation of Zirconium-89 for PET imaging of cancers.

Pages