You are here

Share:

Search Technologies

Showing 1-20 of 77 results found

Tumor Tissues Harboring Mutations in cAMP-specific Phosphodiesterases

The National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize clinical samples with genetic mutations associated with endocrine tumors.

Brain endothelial reporter cells

The National Cancer Institute seeks parties interested in co-development of safe and effective TEM5 agonists and/or antagonists that modulate WNT signaling.

Murine metastatic pancreatic adenocarcinoma cell lines

Researchers at the National Cancer Institute (NCI) developed orthotopic allograft models for pancreatic cancer that utilize cells or tumor fragments implanted into the cancer-free pancreata of recipient immunocompetent mice. NCI seeks licensees to commercialize this invention.

New Insect Sf9-ET Cell Line for Determining Baculovirus Titers

The National Cancer Institute (NCI) seeks licensing partners for a novel modified insect cell line, Sf9-ET, that can quickly and efficiently determine baculovirus titers during the expression of recombinant proteins from a baculovirus-based protein expression system.

Optical Configuration Methods for Spectral Scatter Flow Cytometry

Scientists at the National Cancer Institute (NCI) seek licensees or co-development partners for a multispectral detection method capable of discriminating different Molecular NanoTag components. The capacity to discriminate further increases the sensitivity of detection for NanoTag molecules. Adaptations of this technology could also apply to incorporate spectral scatter detection in other cytometric and microfluidic systems.

BODIPY-FL Nilotinib (Tasigna) for Use in Cancer Research

The National Cancer Institute''s Laboratory of Cell Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize bodipy conjugated tyrosine kinase inhibitors that are currently used in the clinic for the treatment of CML or gastric cancers.

Methods of Producing Effective T-cell Populations Using Akt Inhibitors

Adoptive cell therapy uses cancer reactive T-cells to effectively treat cancer patients. Producing many persistent T-cells is critical for successful treatments. Researchers at the NCI seek licensing and/or co-development research collaborations for a novel method of producing effective T-cell populations using Akt inhibitors.

Mouse Lines with Fluorescently Labelled Membrane Proteins Regulating Cellular Motility and Membrane Trafficking

Impairment of cell motility and membrane trafficking can result in enhanced cell proliferation and survival and increased migration and invasion leading to cancer. Several proteins involved in cell motility and membrane trafficking have been shown to be dysregulated in various cancers. Animal models that facilitate the study of roles of these proteins in vivo are therefore required. The National Cancer Institute (NCI) seeks licensees for Mouse Lines with Fluorescently Labelled Membrane Proteins Regulating Cellular Motility and Membrane Trafficking

High-throughput Assay to Identify New Cancer Drugs

The National Cancer Institute seeks parties interested in collaborative research to evaluate or commercialize a diagnostic tool that can identify new drugs that increase chromosome instability.

Establishment of Induced Pluripotent Stem Cells (iPSC) from the Thirteen-lined Ground Squirrel

Hibernation in mammals is a seasonal state of metabolic suppression and dormancy characterized by a decrease in body temperature to survive extreme environmental stresses. A new Induced Pluripotent Stem Cell (iPSC) line has been established from the neural precursor cells of wild type thirteen-lined ground squirrel (Spermophilus tridecemlineatus), a small mammalian hibernator with unique metabolic adaptations for coping with cold and restricted food supply. This ground squirrel iPSC line can be differentiated into many different cell types for hibernation studies, disease modeling, and drug screening for neuronal injuries or other diseases.

Pages