You are here

Share:

Search Technologies

Showing 1-20 of 55 results found

A New Class of Stable Heptamethine Cyanine Fluorophores and Biomedical Applications Thereof

Researchers at the National Cancer Institute (NCI) have developed an improved class of heptamethine cyanine fluorophore dyes useful for imaging applications in the near-IR range (750-850 nm). A new chemical reaction has been developed that provides easy access to novel molecules with improved properties. Specifically, the dyes display greater resistance to thiol nucleophiles, and are more robust while maintaining excellent optical properties. The dyes have been successfully employed in various in vivo imaging applications and in vitro labeling and microscopy applications. The NCI seek co-development or licensees to develop them as targetable agents for optical-guided surgical interventions.

A Rapid Method of Isolating Neoantigen-specific T Cell Receptor Sequences

Recent research has demonstrated that neoantigen-specific T-cell receptors (TCRs) can be isolated from a cancer patient’s lymphocytes. These TCRs may be used to engineer populations of tumor-reactive T cells for cancer immunotherapies. Obtaining sequences of these functional TCRs is a critical initial step in preparing this type of personalized cancer treatment; however, current methods are time-consuming and labor-intensive. Scientists at the National Cancer Institute (NCI) have developed a rapid and robust method of isolating the sequences of mutation-specific TCRs to alleviate these issues; they seek licensing and/or co-development research collaborations for the development of a method for isolating the sequences of tumor-reactive TCRs. For collaboration opportunities, please contact Steven A. Rosenberg, M.D., Ph.D. at sar@nih.gov.

A549 Cells: Lung Carcinoma Cell Line for Adenovirus

Scientists at the National Cancer Institute have developed a cell line designated A549 that was derived from explanted cultures of human lung cancer tissue. The A549 cell line has been tested under the guidance of the United States Food and Drug Administration (FDA) so, under current Good Manufacturing Practices (GMP), these cells may be suitable for use in manufacturing constructs for use in clinical trials. The National Cancer Institute seeks parties to non-exclusively license this research material.

Assay to Screen Anti-metastatic Drugs

The National Cancer Institute seeks licensees for a model used to study molecular mechanisms and/or signaling pathways involved in tumorigenesis, angiogenesis and metastasis of breast cancer and its response to therapy.

BHD Tumor Cell Line and Renal Cell Carcinoma Line

Scientists at the National Cancer Institute  have developed a novel renal cell carcinoma (RCC) cell line designated UOK257, which was derived from the surgical kidney tissue of a patient with hereditary Birt-Hogg-Dube''''(BHD) syndrome and companion cell line UOK257-2 in which FLCN expression has been restored by lentivirus infection. The NCI Urologic Oncology Branch seeks parties interested in licensing or collaborative research to co-develop, evaluate, or commercialize kidney cancer tumor cell lines.

BODIPY-FL Nilotinib (Tasigna) for Use in Cancer Research

The National Cancer Institute''s Laboratory of Cell Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize bodipy conjugated tyrosine kinase inhibitors that are currently used in the clinic for the treatment of CML or gastric cancers.

Cell Line for Production of Recombinant Human Tissue Inhibitor of Metalloproteinase-2

Recombinant human tissue inhibitors of metalloproteinases (rhTIMP-2) have been shown to suppress tumor growth and tumor-associated angiogenesis. NCI Radiation Oncology Branch (ROB) researchers have developed a unique HEK-293F cell line which stably expresses rhTIMP-2, increasing the production of TIMP-2 to quantities sufficient to be used for testing and development as a therapeutic for various cancers, ischemic diseases (myocardial infarct and cerebrovascular infarct), and neurodegenerative diseases.

Cell Lines Expressing Nuclear and/or Mitochondrial RNAse H1

The National Institute of Child Health & Human Development (NICHD), Program in Genomics of Differentiation, seeks interested parties to further co-develop small molecule inhibitors of RNase H1, especially in regards to genome instability, transcription, and translation.

Detection of Novel Endocrine-Disrupting Chemicals in Water Supplies

Testing for biological activity of glucocorticoids and many other steroid endocrine-disrupting chemicals (EDCs) has not been previously performed. An automated, highly reproducible, and low cost assay detects biologically active steroidal EDCs and is suitable for wide application in testing water samples. The National Cancer Institute seeks partners for collaborative co-development research and/or licensing to move this technology into the public domain.

Device for Growing Mammalian Cells on EM Grids

A device used to hold transmission electron microscopy grids that allows adherent mammalian cells to grow on and the 3D printing software to create the device, which the NCI seeks to license.

Establishment of Induced Pluripotent Stem Cells (iPSC) from the Thirteen-lined Ground Squirrel

Hibernation in mammals is a seasonal state of metabolic suppression and dormancy characterized by a decrease in body temperature to survive extreme environmental stresses. A new Induced Pluripotent Stem Cell (iPSC) line has been established from the neural precursor cells of wild type thirteen-lined ground squirrel (Spermophilus tridecemlineatus), a small mammalian hibernator with unique metabolic adaptations for coping with cold and restricted food supply. This ground squirrel iPSC line can be differentiated into many different cell types for hibernation studies, disease modeling, and drug screening for neuronal injuries or other diseases.

Genetically Engineered Mouse-Derived Allograft for Preclinical Studies of Metastatic Melanoma

Researchers at NCI have developed a means of more closely simulating in mouse models both melanoma cancer itself and the resulting physiological an immunological response by creating a genetically engineered mice (GEM)-derived allograft (GDA).  This allograft both resembles human-like melanoma and has features that will stimulate a normal immunological response in the mouse.

Pages