You are here

Share:

Search Technologies

Showing 1-20 of 64 results found

Zirconium-89 PET Imaging Agent for Cancer

This technology is a new generation of rationally designed chelating agents that improve the complexation of Zirconium-89 for PET imaging of cancers.

Time Efficient Multi-Pulsed Field Gradient (mPFG) MRI Without Concomitant Gradient Field Artifacts

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks research co-development partners and/or licensees for the development of diffusion tensor distribution imaging (DTD-MRI) in assessing disease (e.g., cancer), normal and abnormal developmental processes, degeneration and trauma in the brain and other soft tissues, and other applications.

Tamperless Tensor Elastography Imaging

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks research co-development partners and/or licensees for the development of tamperless tensor elastography imaging in assessing disease (e.g., cancer), normal and abnormal developmental processes, degeneration and trauma in the brain and other soft tissues, and other applications.

Synthetic Lethality-mediated Precision Oncology via the Tumor Transcriptome

Scientists at the National Cancer Institute (NCI) have developed SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a computational precision-oncology framework harnessing genetic interactions to improve treatment options for cancer patients. NCI seeks collaborators or licensees to advance the development of this technology into precision diagnostics.

SLCO1B3 Genotyping to Predict a Survival Prognosis of Prostate Cancer

This invention identifies two polymorphic genetic markers in the SLCO1B3 (formerly SLC21A8) gene, called 334T>G and 699G>A, that can be measured in genomic DNA obtained from a blood sample to predict survival from diagnosis of prostate cancer in that individual patient.

Sensitive and Economic RNA Virus Detection Using a Novel RNA Preparation Method

The National Eye Institute seeks research and co-development partners and/or licensees to: (1) advance the production and uses of the new RNA preparation method; (2) manufacture reagent kits for testing in patients with suspected COVID-19 and other DNA/RNA viruses, and (3) manufacture reagent kits for patient biomarker profiles and inherited disease diagnostics.

RNASEH-Assisted Detection Assay for RNA

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for the development and commercialization of a diagnostic assay that detects sequence-specific (viral) RNA.

Ratio Based Biomarkers for the Prediction of Cancer Survival

The NCI seeks licensees or co-development partners for this technology, which describes compositions, methods and kits for identifying, characterizing biomolecules expressed in a sample that are associated with the presence, the development, or progression of cancer.

Quantitative In Vivo Methods for Measuring Brain Networks

Researchers at the NICHD seek licensing and/or co-development research collaborations for a Magnetic Resonance Imaging (MRI) method to quantitatively measure in vivo the estimated conduction time of nerve impulses in the brain.

Prognostic Biomarkers for Patients with Early Stage Lung Cancer

Investigators at the National Cancer Institute discovered a set of biomarkers that can identify patients with early stage lung cancer who are at a high risk of relapse. These prognostic methods can guide physicians to select appropriate treatment and follow-up while sparing other patients of unnecessary treatment and negative side-effects of chemotherapy. The NCI seeks parties to license or co-develop the invention.

Novel Fixative for Improved Biomolecule Quality from Paraffin-Embedded Tissue

Researchers in the National Cancer Institute’s Laboratory of Pathology have developed an improved tissue fixative solution that is formaldehyde-free. This novel fixative, BE70, significantly improves DNA, RNA, and protein biomolecule integrity in histological samples compared to traditional fixatives. Additionally, BE70 is compatible with current protocols and does not alter tissue processing. NCI seeks partners to license this technology.

Non-invasive diagnostic and prognostic assay for early stage lung cancer

NCI scientists developed a method that uses urine samples to detect early-stage cancers and that could supplement low-dose computed tomography (LD-CT) for early-stage cancer detection, and significantly decrease expensive false negative/false positive results. The NCI seeks co-developers or licensees to commercialize this technology.

Near-IR Light-Cleavable Antibody Conjugates and Conjugate Precursors

Researchers at the National Cancer Institute (NCI) developed novel groups of cyanine (Cy) based antibody-drug conjugate (ADC) chemical linkers that undergo photolytic cleavage upon irradiation with near-IR light. By using the fluorescent properties of the Cy linker to monitor localization of the ADC, and subsequent near-IR irradiation of cancerous tissue, drug release could be confined to the tumor microenvironment.

Pages