You are here

Share:

Search Technologies

Showing 181-193 of 193 results found

Transformation of Weak or Non-Immunogenic Antigens to Produce an Immune Response and Therapeutic Polypeptides for the Treatment and Prevention of Cancer

Researchers at the National Institute on Aging (NIA) have developed a novel strategy for rendering weakly or non-immunogenic, shared (between self and tumor) antigens immunogenic, or able to produce an immune response. Further, they have created therapeutic polypeptides comprising tumor-associated embryonic antigens and chemoattractant ligands. Cancers targeted by these developments include breast, renal, lung, ovarian, and hematological cancers.

Treating Cancer with Anti-Angiogenic Chimeric Antigen Receptors

Researchers at the NCI have developed chimeric antigen receptors (CARs) with a high affinity for VEGFR2. Many cancers and solid tumors from endothelial cells overexpress VEGFR2 making that prime targets for treatment with these specific CARs.

Treating Hypertension Using Erythropoietin and its Derivatives

The Laboratory of Cardiovascular Science at the National Institute on Aging, is seeking parties interested in collaborative research to further co-develop a potential new hypertensive drug based on recombinant human erythropoietin (rhEPO).

Treating Vascular Disease, Injury, and Inflammation

The Laboratory of Cardiovascular Sciences of the National Institute on Aging, is seeking parties interested in licensing or collaborative research to co-develop a cell surface protein observed to reduce inflammation and related injuries. In vivo and in vitro data are available.

Treatment of GPR101-Related, Growth Hormone-Related Disorders Such as Gigantism, Dwarfism or Acromegaly

Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) have developed a cell line that stably over-expresses GPR101. GPR101 inhibitors and agonists may be used to treat gigantism, acromegaly or dwarfism. The NICHD seeks licensing and/or co-development research partners to collaborate on the identification and characterization of GPR101 inhibitors (antagonists and inverse agonists) and agonists with the goal of identifying agents to treat gigantism, acromegaly or dwarfism.

Treatment Regimens for hetIL-15

Researchers at the National Cancer Institute (NCI) developed a treatment regimens for cancer and HIV using heterodimeric IL-15 (hetIL-15). The regimens allow access to B cell follicles, germinal centers, and tumor sites that are difficult for drug entry. A combination therapy for HIV infection is also described using hetIL-15 and a conserved element vaccine. Researchers seek licensing and/or co-development research collaborations for development and commercialization of treatment regimens for HIV infection.

Use of Cucurbitacins and Withanolides for the Treatment of Cancer

The National Cancer Institute's Laboratory of Experimental Immunology, Cancer Inflammation Program, seeks parties interested in collaborative research to co-develop, evaluate, or commercialize the use of certain cucurbatacins or withanolides in combination with pro-apoptotic agonists of TRAIL death receptors for cancer therapy.

Use of Heterodimeric IL-15 in Adoptive Cell Transfer

Researchers at the National Cancer Institute (NCI) have developed a technology that provides methods of performing adoptive cell transfer (ACT), an immunotherapeutic approach for cancer treatment, by administering a heterodimeric Interleukin 15/Interleukin 15 receptor alpha (IL-15/IL-15Rα) complex (hetlL-15) in the absence of lymphodepletion, thereby eliminating any lymphodepletion-associated detrimental side effects.

Virus-Like Particles That Can Deliver Proteins and RNA

The present invention describes novel virus-like particles (VLPs) that are capable of binding to and replicating within a target mammalian cell, including human cells. The claimed VLPs are safer than viral delivery because they are incapable of re-infecting target cells. The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.

Pages