You are here

Share:

Search Technologies

Showing 61-80 of 201 results found

Fusion Proteins as HIV-1 Entry Inhibitors

Novel fusion proteins with good stability and potency against HIV-1. These fusion proteins have good drug properties and potential as prophylactics or therapeutics against HIV-1 infection. Researchers at the NCI seek licensing for the development and commercialization of novel fusion proteins as therapeutics or prophylactics against HIV-1 infection.

Griffithsin-Based Anti-viral Therapeutics with Improved Stability and Solubility

Scientists at the National Cancer Institute's Molecular Targets Laboratory have modified the Cnidarin-derived griffithsin compound to have greater storage time and stability. Griffithsin compounds are a class of highly potent proteins capable of blocking the HIV virus from penetrating T cells. The National Cancer Institute seeks parties interested in collaborative research to license or co-develop large-scale recombinant production of the compound.

High Affinity Cross Species Single Domain Antibodies Targeting Mesothelin

Researchers at the National Cancer Institute (NCI) have isolated two high affinity anti-mesothelin single domain antibodies (also known as nanobodies), A101 and G8. These antibodies have been isolated from NCI’s newly developed camel single domain (VHH) libraries by phage display. The antibodies have a high affinity for mesothelin-positive tumor cells from both human and mouse origins. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

High Affinity Monoclonal Antibodies Targeting Glypican-1

Researchers at the National Cancer Institute (NCI) have isolated two Glypican-1- (GPC1)- specific antibodies: the mouse monoclonal antibody HM2 that binds the C-lobe of GPC1 close to the cell surface, and the camel single domain antibody D4. The D4 single domain antibody (also called ‘nanobody’) has a high affinity for GPC1-positive tumor cells from both human and mouse origins. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

High Affinity Monoclonal Antibodies Targeting Glypican-2 for Treating Childhood Cancers

Cancer therapies that specifically target Glypican 2 (GPC2) are strong therapeutic candidates for pediatric patients with neuroblastoma and other GPC2 expressing cancers. The inventors at the National Cancer Institute (NCI) have developed and isolated two new antibodies that target GPC2 (CT3 and CT5) that are available for licensing and co-development.

Highly Soluble Pyrimido-Dione-Quinoline Compounds: Small Molecules that Stabilize and Activate p53 in Transformed Cells

Researchers at the National Cancer Institute (NCI) have developed an invention reporting the composition and function of a pyrimido-dione-quinoline that was found to inhibit HDM2’s ubiquitin ligase (E3) activity without accompanying genotoxicity. The current invention results in the stabilization of p53 in cells through the inhibition of its ubiquitin-mediated proteasomal degradation resulting in a robust p53 response in tumors. NCI researchers seek licensing and/or co-development partners for this invention.

Human Antibodies Against Middle East Respiratory Syndrome Coronavirus

The National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to co-develop antibody-based therapeutic against MERS-CoV, including animal studies, cGMP manufacturing, and clinical trials.

Human Monoclonal Antibodies Against Dengue Viruses

Researchers at NCI's  Cancer and Inflammation Program developed fully human monoclonal antibodies that bind and neutralize dengue type 1, 2, 3 and 4 viruses. The National Cancer Institute's Cancer and Inflammation Program seeks parties interested in licensing fully human monoclonal antibodies as possible therapeutics and prophylactics, as well as a template for a Dengue vaccine.

Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma

Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

Human T Cell Receptors for Treating Cancer

T cell receptors (TCRs) are proteins that recognize antigens in the context of infected or transformed cells and activate T cells to mediate an immune response and destroy abnormal cells. The National Cancer Institute's Surgery Branch seeks interested parties to license or co-develop the use of T cell receptors (TCRs) cloned against the SSX-2 antigen for the treatment of cancer.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

Pages