You are here

Share:

Search Technologies

Showing 1-20 of 39 results found

Synergistic Use of Exo VII Inhibitors And Quinolone Antibiotics For Treating Bacterial Infection

Scientists at the National Cancer Institute (NCI) have discovered a bacterial exonuclease VII (ExoVII) inhibitor that increases the potency of widely used quinolone antibiotics targeting prokaryotic type IIA topoisomerases. NCI seeks research co-development partners and/or licensees for the development of ExoVII inhibitors as new antibiotic adjuvants to boost the efficacy of quinolone antibiotics and/or restore the susceptibility of resistant bacteria.

Methods of Producing Thymic Emigrants from Induced Pluripotent Stem Cells

Pluripotent stem cells are a promising source of T cells for a variety of clinical applications. However, current in vitro methods of T cell differentiation result in the generation of cells with aberrant phenotypes. Researchers at the National Cancer Institute (NCI) have now developed methodology for generating induced pluripotent stem cell thymic emigrants (iTE). Antigen-specific CD8αβ+ iTEs exhibited functional properties in vitro that were almost indistinguishable from natural naïve CD8αβ+ T cells, including vigorous expansion and robust anti-tumor activity. iTEs recapitulated many of the transcriptional programs of naïve T cells in vivo and revealed a striking capacity for engraftment, memory formation, and efficient tumor destruction. The NCI seeks licensing and/or co-development research collaborations for this invention.

Peptide Hydrogels for Rate-Controlled Delivery of Therapeutics

Scientists at the National Cancer Institute (NCI) have developed a novel delivery platform in which the scaffold of an anionic hydrogel (AcVES3) can be attenuated to deliver therapeutic small molecules, peptides, proteins, nanoparticles, or whole cells. The NCI seeks collaborators and licensees for the development of this technology in various clinical and laboratory applications.

Design and Biological Activity of Novel Stealth Polymeric Lipid Nanoparticles for Enhanced Delivery of Hydrophobic Photodynamic Therapy Drugs

Scientists at the National Cancer Institute (NCI) developed a novel stealth lipid-based nanoparticle formulation comprising phospholipid, DC8,9PC and a polyethylene glycol-ated (PEGylated) lipid – such as DSPE-PEG2000 – that efficiently package a high amounts of hydrophobic photodynamic drug (PDT) – such as HPPH – in stable vesicles. This HPPH-loaded liposome system demonstrates higher serum stability and ambient temperature stability upon storage. It exhibits increased tumor accumulation and improved animal survival in mice tumor models compared to the formulation in current clinical trials. The NCI seeks co-development partners and/or corporate licensees for the application of the technology as an anti-cancer therapeutic.

Novel HPPK (Bacterial Protein) Inhibitors for Use as Antibacterial Agents

Researchers at the National Cancer Institute (NCI) have developed several novel small-molecule inhibitors directed against HPPK, a bacterial protein, as potential antimicrobial agents. The NCI seeks co-development partners or licensees to further develop these novel small-molecule HPPK inhibitors as broad-spectrum bactericidal agents.

Efficient Cell-Free Production of Papillomavirus Gene Transfer Vectors

Researchers at the National Cancer Institute (NCI) developed cell free methods for efficiently producing high titer, papillomavirus virus-based gene transfer vectors. These vectors can potentially be used for vaccines and/or cancer therapeutic applications. NCI seeks licensing and/or co-development research collaborations for further development of these vectors.

A Triple Combination HIV Microbicide

Three anti-HIV proteins- the antiviral lectin cyanovirin, the antiviral lectin griffithsin, and the monoclonal antibody 2G12- have been successfully expressed in the same rice seed. The co-expression allows for a low cost, stable production method for a triple anti-HIV microbicide for the prevention of HIV. The National Cancer Institute (NCI) seeks licensees for the invention microbicide and production method.

Human Antibodies Against Middle East Respiratory Syndrome Coronavirus

The National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to co-develop antibody-based therapeutic against MERS-CoV, including animal studies, cGMP manufacturing, and clinical trials.

Synthetic Bacterial Nanoparticles as Drug and Vaccine Delivery Vehicles

Engineered bacterial spores can provide many useful functions such as the treatment of infections, use as an adjuvant for the delivery of vaccines, and the enzymatic degradation of environmental pollutants. Researchers at the National Cancer Institute’s Laboratory of Molecular Biology have developed a novel, synthetic spore husk-encased lipid bilayer (SSHEL) particle that is uniquely suited for a variety of these functions. NCI seeks partners to license and/or co-develop this technology toward commercialization.

Methods for Producing Stem Cell-Like Memory T Cells for Use in T Cell-Based Immunotherapies

Researchers at the National Cancer Institute (NCI) seek research & co-development and/or licensees for a novel, ex vivo method by which stem cell-like memory T cells (Tscm) can be generated by stimulating naïve T cells in the presence of inhibitors of GSK-3beta, which are capable of activating the Wnt pathway. These Tscm cells, generated using GSK-3beta inhibitors, display enhanced survival and proliferation upon transfer, have multipotent capacity to generate all memory and effector T cell subsets, and show increased anti-tumor activity in a humanized mouse tumor model.

Single domain CD4, HIV-1 Antibodies, and Fusion Proteins for treatment of HIV

Researchers at the National Cancer Institute (NCI) have developed single domain human CD4 proteins to inhibit HIV-1 entry and improved human domain antibodies against HIV-1. Fusion proteins comprising the single domain CD4 and HIV-1 antibody can be used to effectively neutralize HIV-1 in vitro. Researchers seek licensing for development of these antibody-based therapeutics for the treatment of HIV-1.

Novel Anti-HIV Proteins from Coral Reefs

Scientists at the National Cancer Institute's Molecular Targets Laboratory have discovered that Cnidarins as a novel class of highly potent proteins capable of blocking the HIV virus from penetrating T-cells. The National Cancer Institute seeks parties interested in collaborative research to license or co-develop large-scale recombinant production of cnidarins.

Pages