You are here

Share:

Search Technologies

Showing 1-20 of 163 results found

Multifunctional RNA Nanoparticles as Cancer and HIV Therapeutics

The promise of RNA interference based therapeutics is made evident by the recent surge of biotechnological drug companies that pursue such therapies and their progression into human clinical trials. The present technology discloses novel RNA  and RNA/DNA nanoparticles including multiple siRNAs, RNA aptamers, fluorescent dyes, and proteins. The National Cancer Institute sees parties interested licensing this technology  or in collaborative research to co-develop RNAi-based nanoparticle therapeutics for cancer and HIV.

Efficient Cell-Free Production of Papillomavirus Gene Transfer Vectors

Researchers at the National Cancer Institute (NCI) developed cell free methods for efficiently producing high titer, papillomavirus virus-based gene transfer vectors. These vectors can potentially be used for vaccines and/or cancer therapeutic applications. NCI seeks licensing and/or co-development research collaborations for further development of these vectors.

Modulating Chemotherapeutic Cytotoxicity

The NCI seeks partners interested in in-licensing or co-development collaboration on CD47-targeting therapeutics for cardioprotection and autophagy modulation.

Functionally-Interdependent Shape-Switching Nucleic Acid Nanoparticles

Researchers at the National Cancer Institute (NCI) have developed nucleic-acid-based nanoparticle that can be adapted for RNA interference (RNAi), molecular imaging, or a combination thereof. The invention nanoparticles can be used as therapeutics in the treatment of cancer, whichthe NCI seeks parties to license or co-develop.

Human T Cell Receptors for Treating Cancer

T cell receptors (TCRs) are proteins that recognize antigens in the context of infected or transformed cells and activate T cells to mediate an immune response and destroy abnormal cells. The National Cancer Institute's Surgery Branch seeks interested parties to license or co-develop the use of T cell receptors (TCRs) cloned against the SSX-2 antigen for the treatment of cancer.

Processes for Producing and Purifying Nucleic Acid-Containing Compositions

This technology provides improved processes for production and purification of nucleic acid-containing compositions, such as non-naturally occurring viruses, for example, recombinant polioviruses that can be employed as oncolytic agents. Some of the improved processes relate to improved processes for producing viral DNA template.

Fibroblast Growth Factor Receptor 4 (FGFR4) Monoclonal Antibodies and Methods of Their Use

Researchers at the National Cancer Institute (NCI) developed several high-affinity monoclonal antibodies to treat Fibroblast Growth Factor Receptor 4 (FGFR4)-related diseases including rhabdomyosarcoma and cancers of the liver, lung, pancreas, ovary and prostate. These antibodies have been used to generate antibody-drug conjugates (ADCs) and chimeric antigen receptors (CARs), which are capable of specifically targeting and killing diseased cells. NCI seeks co-development opportunities or licensees for this technology.

Virus-Like Particles That Can Deliver Proteins and RNA

The present invention describes novel virus-like particles (VLPs) that are capable of binding to and replicating within a target mammalian cell, including human cells. The claimed VLPs are safer than viral delivery because they are incapable of re-infecting target cells. The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.

Increased Therapeutic Effectiveness of PE-Based Immunotoxins

To improve the therapeutic effectiveness of PE-based immunotoxins through multiple rounds of drug administration, NIH inventors have sought to identify and remove the human B cell epitopes within PE. Previous work demonstrated that the removal of the murine B cell and T cell epitopes from PE reduced the immunogenicity of PE and resulted in immunotoxins with improved therapeutic activity. The National Cancer Institute's Laboratory of Molecular Biology seeks interested parties to co-develop and commercialize immunotoxins using toxin domains lacking human B cell epitopes.

Combination Therapy for Prostate and Breast Cancer

Researchers at the National Cancer Institute developed a novel method of immunogenic modulation in androgen and endocrine deprivation therapy. A combination of hormone therapy with immunotherapies such as PROSTVAC™, a Brachyury vaccine, PROVENGE™, ipilumimab, nivolumab, XOFIGO™, PANVAC, a yeast-MUC-1 immunotherapeutic, or HERCEPTIN™ can benefit prostate and breast cancer patients, especially those who have acquired resistances. The researchers seek parties to co-develop this method.

Pages