You are here

Share:

Search Technologies

Showing 1-20 of 178 results found

Optimized Monospecific or Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

Researchers at the National Cancer Institute (NCI) developed improved monospecific and bicistronic chimeric antigen receptors (CARs) targeting CD19 and CD20. Importantly, CD19 and CD20 are highly expressed in diffuse large B-cell lymphoma, acute lymphoblastic leukemia and other B-cell lymphomas. These improved CARs can be useful in treating these diseases. NCI is seeking parties interested in the co-development or licensing of this invention for immunotherapy.

Extremely Rapid Method to Isolate Neoantigen Reactive T Cell Receptors (TCRs)

Researchers at the National Cancer Institute (NCI) have developed a novel method for identifying neoantigen reactive T cells and T cell receptors (TCRs), isolated from fresh tumors of common epithelial cancers. This highly specific and sensitive method allows rapid determination of the neoantigen reactive TCR sequences and can be very useful to translate this information into TCR-engineered T-cell populations for immunotherapy without the need to grow tumor infiltrating T-cells and expensive, time-consuming screening. The NCI seeks research co-development partners and/or licensees for this invention.

Efficient Cell-Free Production of Papillomavirus Gene Transfer Vectors

Researchers at the National Cancer Institute (NCI) developed cell free methods for efficiently producing high titer, papillomavirus virus-based gene transfer vectors. These vectors can potentially be used for vaccines and/or cancer therapeutic applications. NCI seeks licensing and/or co-development research collaborations for further development of these vectors.

siRNA Delivery Using Hexameric Tetrahedral RNA Nanostructures for Gene Silencing

Researchers at the National Cancer Institute (NCI), in collaboration with researchers at the University of California, Santa Barbara (UCSB), developed a tetrahedral-shaped RNA nanoparticle for the delivery of siRNA to activate RNAi. The tetrahedral RNA nanoparticles can contain twelve Dicer substrate RNA duplexes for gene silencing. The NCI seeks parties interested in co-development or licensing of these tetrahedral RNA nanoparticles.

Modulating Chemotherapeutic Cytotoxicity

The NCI seeks partners interested in in-licensing or co-development collaboration on CD47-targeting therapeutics for cardioprotection and autophagy modulation.

Multi-epitope Vaccines against TARP (ME-TARP) for Treating Prostate and Breast Cancer

Researchers at the NCI have developed a treatment for prostate and breast cancer using multivalent peptides derived from TARP, the T cell receptor gamma alternate reading frame protein. These immunogenic peptides from TARP elicit an immune response, triggering T cells to kill only the cancer cells within a patient. NCI seeks licensees or co-development partners to commercialize this invention.

Methods of preventing tissue ischemia

The National Cancer Institute's Laboratory of Pathology seeks parties interested in licensing or collaborative research to co-develop therapeutics targeting vasodialation.

Combination Therapy for Prostate and Breast Cancer

Researchers at the National Cancer Institute developed a novel method of immunogenic modulation in androgen and endocrine deprivation therapy. A combination of hormone therapy with immunotherapies such as PROSTVAC™, a Brachyury vaccine, PROVENGE™, ipilumimab, nivolumab, XOFIGO™, PANVAC, a yeast-MUC-1 immunotherapeutic, or HERCEPTIN™ can benefit prostate and breast cancer patients, especially those who have acquired resistances. The researchers seek parties to co-develop this method.

Highly Soluble Pyrimido-Dione-Quinoline Compounds: Small Molecules that Stabilize and Activate p53 in Transformed Cells

Researchers at the National Cancer Institute (NCI) have developed an invention reporting the composition and function of a pyrimido-dione-quinoline that was found to inhibit HDM2’s ubiquitin ligase (E3) activity without accompanying genotoxicity. The current invention results in the stabilization of p53 in cells through the inhibition of its ubiquitin-mediated proteasomal degradation resulting in a robust p53 response in tumors. NCI researchers seek licensing and/or co-development partners for this invention.

Analogues of Withanolide E Sensitize Cancer Cells Toward Apoptosis

There is a need to develop compounds that can sensitize cancer cells to apoptosis inducing ligands, such as poly I:C and TRAIL. In collaboration with the University of Arizona, NCI investigators discovered a series of compounds in the withanolide family that synergistically enhance the response of cancer cells to treatment with an apoptosis-inducing ligand. The NCI seeks licensing and/or co-development research collaborations for development of withanolide E analogues for the treatment of cancer.

Fully-human Heavy-chain-only Anti-B-cell Maturation Antigen (BCMA) Chimeric Antigen Receptors (CARs)

Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target B-cell maturation antigen (BCMA) are strong therapeutic candidates for patients with plasma cell malignancy diseases such as, multiple myeloma (MM), as well as for patients with Hodgkin’s lymphoma. BCMA is a cell surface protein preferentially expressed on a subset of B cells and mature plasma cells, but not on other cells in the body. The limited expression of BCMA on B and plasma cells makes BCMA an attractive therapeutic target for B cell and plasma cell malignancy diseases. The 12 anti-BCMA CARs described are fully human CARS and have the potential to treat patients with various plasma cell and B cell malignancy diseases.

A Rapid Method of Isolating Neoantigen-specific T Cell Receptor Sequences

Recent research has demonstrated that neoantigen-specific T-cell receptors (TCRs) can be isolated from a cancer patient’s lymphocytes. These TCRs may be used to engineer populations of tumor-reactive T cells for cancer immunotherapies. Obtaining sequences of these functional TCRs is a critical initial step in preparing this type of personalized cancer treatment; however, current methods are time-consuming and labor-intensive. Scientists at the National Cancer Institute (NCI) have developed a rapid and robust method of isolating the sequences of mutation-specific TCRs to alleviate these issues; they seek licensing and/or co-development research collaborations for the development of a method for isolating the sequences of tumor-reactive TCRs. For collaboration opportunities, please contact Steven A. Rosenberg, M.D., Ph.D. at sar@nih.gov.

New Chimeric Antigen Receptor (CAR) Format for Developing Improved Adoptive Cell Therapies

Researchers at the National Cancer Institute (NCI) have developed a new format for expressing Chimeric Antigen Receptors (CARs) that is available for licensing and co-development. The inventors found that there was an increased therapeutic effect when using their proprietary (anti-glypican 3 [GPC3]) hYP7 antibody in this format. The novel technology is useful for improving CAR therapies to treat a range of cancers.

Pages