You are here

Share:

Search Technologies

Showing 1-20 of 48 results found

Synthetic Bacterial Nanoparticles as Drug and Vaccine Delivery Vehicles

Engineered bacterial spores can provide many useful functions such as the treatment of infections, use as an adjuvant for the delivery of vaccines, and the enzymatic degradation of environmental pollutants. Researchers at the National Cancer Institute’s Laboratory of Molecular Biology have developed a novel, synthetic spore husk-encased lipid bilayer (SSHEL) particle that is uniquely suited for a variety of these functions. NCI seeks partners to license and/or co-develop this technology toward commercialization.

Small Molecule Anti-cancer Agents that Stabilize the MYC-G-Quadruplex

The proto-oncogene c-Myc is deregulated and overexpressed in ~70% of all cancers. Thus, c-Myc is an attractive therapeutic target. Beyond cancer, Myc is also a positive effector of tissue inflammation, and its function has been implicated in the pathophysiology of heart failure. Researchers at the National Cancer Institute (NCI) developed novel small molecules that target c-Myc at the transcriptional level, thus enabling a potential pan-cancer therapeutic. Specifically, these compounds stabilize the transcription repressing quadruplex in the c-Myc gene promoter region. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop these therapeutic targets.'

Sensitizing Cancer Cells to DNA Targeted Therapies

Chk2 is a protein kinase activated in response to DNA double strand breaks. In normal tissues, Chk2 phosphorylates and thereby activates substrates that induce programmed cell death, or apoptosis, via interactions with p53, E2F1, PML proteins. In cancer tissues, where apoptosis is suppressed, Chk2 phosphorylates and inactivates cell cycle checkpoints (via interactions with Cdc25, phosphatases and Brca1 proteins), which allows cancer cells to repair and tolerate DNA damage. Hence, Chk2 inhibitors would be expected to protect normal tissues by reducing apoptosis, and to sensitize cancer cells to DNA-targeted agents. The National Cancer Institute seeks licensees for small molecule inhibitors of Chk2 for the treatment of cancer.

Schweinfurthins and Uses Thereof

Researchers at the National Cancer Institute (NCI) developed novel analogs of the natural product schweinfurthins to treat neurofibromatosis type 1 (NF1). The compounds demonstrate effective growth inhibition in malignant peripheral nerve sheath tumor cell lines and mouse models of astrocytomas. Researchers seek licensing and/or co-development research collaboration opportunities to further develop the schweinfurthin analogs.

Reprogrammed Tumor Infiltrated Lymphocytes for Efficient Identification of Tumor-Antigen Specific T-Cell Receptors

Adoptive T Cell Therapy (ACT) has proven to effectively treat established tumors. This treatment consists of harvesting Tumor Infiltrated Lymphocytes (TIL) which specifically recognize cancer, expanding the tumor-specific TIL in vitro, and then reinfusing these cells into the patient for treatment. Both these lymphocytes and their T cell receptors (TCR) are valuable for cancer immunotherapy. Inventors from the National Cancer Institute (NCI) have developed an improved method to identify tumor-specific TCRs by reprogramming TIL into stem cells. This invention is available to license further development.

Phosphodiesterase as a target for cancer therapeutics

Investigators at the National Cancer Institute have discovered fluoroquinolone derivatives as specific Tdp1 inhibitors that could potentiate the pharmacological action of Top1 inhibitors currently used in cancer treatment.

Peptide Mimetic Ligands of Polo-like Kinase 1 Polo Box Domain (“Plk1 PBD Portfolio”)

Researchers at the National Cancer Institute (NCI) have developed peptidomimetic inhibitors that disrupt Polo-like kinase 1 (Plk1)-mediated protein interactions by targeting polo-box domain (PBD). These compounds are designed to selectively cause mitotic arrest in cancer cells with abnormal Plk1 expression. Researchers seek licensing and/or co-development research collaborations to further develop the inhibitors.

Peptide Mimetic Ligands of Polo-like Kinase 1 Polo Box Domain

Researchers at the National Cancer Institute (NCI) have developed peptidomimetic inhibitors that disrupt Polo-like kinase 1 (Plk1)-mediated protein interactions by targeting polo-box domain (PBD). The compounds are designed to selectively cause mitotic arrest in cancer cells with abnormal Plk1 expression. Researchers seek licensing and/or co-development research collaborations to further develop the inhibitors.

NSAIDs that Assist the Treatment of Human Diseases

Researchers at the National Cancer Institute (NCI) developed compounds containing both a non-steroidal anti-inflammatory drug (NSAID) and a nitroxyl (HNO) -releasing agent that have significantly reduced toxicity, allowing their use for extended periods of time without severe side effects.The HNO-releasing moiety contained in this invention may expand the medical utility of NSAIDs. HNO releasing agents possess anticancer activity as well as good antioxidant properties, which has potential benefit for a variety of human diseases, including acute and chronic inflammation. NCI seeks parties to license or co-develop this technology.

Novel Small Molecule Antagonists Targeting Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Long Non-coding RNA (lncRNA) as Anticancer Agents

Researchers at the National Cancer Institute (NCI) have developed an invention describing compounds that bind and alter the nuclear copy number of a long non-coding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), with the proposed consequence of inducing slower tumor growth and a reduction in metastasis. The NCI seeks licensing and/or co-development research collaborations for novel small molecule antagonists targeting MALAT1 lncRNA as anticancer agents.

Nitroxyl (HNO) Releasing Therapeutics

The National Cancer Institute's Cancer and Inflammation Program is seeking statements of capability or interest from parties interested in licensing therapeutic agents that generate Nitroxyl (HNO) in physiological media.

Pages