You are here

Share:

Search Technologies

Showing 61-80 of 164 results found

Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma

Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

Human T Cell Receptors for Treating Cancer

T cell receptors (TCRs) are proteins that recognize antigens in the context of infected or transformed cells and activate T cells to mediate an immune response and destroy abnormal cells. The National Cancer Institute's Surgery Branch seeks interested parties to license or co-develop the use of T cell receptors (TCRs) cloned against the SSX-2 antigen for the treatment of cancer.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

Immunogenic Antigen Selective Cancer Immunotherapy

Researchers at the National Institute on Aging working on cancer immunotherapy and detection report the use of SPANX-B polypeptides in the treatment and identification of cancer. Specific human malignancies targeted for the treatments disclosed include melanoma and lung, colon, renal, ovarian and breast carcinomas. The NIA seeks parties interested in licensing or collaborative research to further develop, evaluate, or commercialize SPANX-B polypeptides in the treatment and identification of cancer.

Immunotherapeutics for Pediatric Solid Tumors

The National Cancer Institute’s Pediatric Oncology Branch seeks partners interested in licensing or collaborative research to co-develop new immunotherapeutic agents based on chimeric antigen receptor (CARs) for the treatment of pediatric solid tumors.

Improved Personalized Cancer Immunotherapy

The National Cancer Institute’s Surgery Branch seeks partners interested in collaborative research to co-develop adoptive transfer of tumor infiltrating leukocytes (TIL) for cancers other than melanoma.

In silico design of RNA nanoparticles

The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop RNA nanostructures using computational and synthetic methods.

In vitro Generation of an Autologous Thymic Organoid from Human Pluripotent Stem Cells

The thymus is the only organ capable of producing conventional, mature T cells; a crucial part of the adaptive immune system. However, its efficiency and function are progressively reduced as we age, leading to a compromised immune system in the elderly. Moreover, production of T cells with specific receptors is an important concern for cancer immunotherapy. Current in vitro methods produce immature T cells that are not useful for therapy. Researchers at the National Cancer Institute (NCI) have generated an autologous thymic organoid from human pluripotent stem cells to address this problem. The organoid can be used to develop clinical applications such as production of autologous T and natural killer T (NKT) cells and reconstitution of the adaptive immune system. NCI is seeking licensees for the thymic organoid and the method of its generation to be used in a variety of clinical applications.

Increased Therapeutic Effectiveness of PE-Based Immunotoxins

To improve the therapeutic effectiveness of PE-based immunotoxins through multiple rounds of drug administration, NIH inventors have sought to identify and remove the human B cell epitopes within PE. Previous work demonstrated that the removal of the murine B cell and T cell epitopes from PE reduced the immunogenicity of PE and resulted in immunotoxins with improved therapeutic activity. The National Cancer Institute's Laboratory of Molecular Biology seeks interested parties to co-develop and commercialize immunotoxins using toxin domains lacking human B cell epitopes.

Inhibition of T Cell Differentiation and Senescence by Overexpression of Transcription Factor c-Myb

Researchers at the National Cancer Institute (NCI) have developed a method by which memory T cells can be generated from other T cell populations using overexpression of the transcription factor c-Myb. Importantly, these reprogrammed memory T cells show increased proliferative and survival capacity. This strategy could also potentially generate anti-tumor T cells with improved viability and therapeutic efficacy for adoptive ACT. Researchers at the NCI seek licensing and/or co-development research collaborations for this invention.

Method for Targeted Therapeutic Delivery of Proteins into Cells

The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

Methods for Producing Stem Cell-Like Memory T Cells for Use in T Cell-Based Immunotherapies

Researchers at the National Cancer Institute (NCI) seek research & co-development and/or licensees for a novel, ex vivo method by which stem cell-like memory T cells (Tscm) can be generated by stimulating naïve T cells in the presence of inhibitors of GSK-3beta, which are capable of activating the Wnt pathway. These Tscm cells, generated using GSK-3beta inhibitors, display enhanced survival and proliferation upon transfer, have multipotent capacity to generate all memory and effector T cell subsets, and show increased anti-tumor activity in a humanized mouse tumor model.

Pages