You are here

Share:

Search Technologies

Showing 181-191 of 191 results found

Anti-SLAMF7 Chimeric Antigen Receptors

Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target Signaling Lymphocyte Activation Molecule F7 (SLAMF7) are strong therapeutic candidates for patients with Multiple Myeloma (MM). SLAMF7 is highly expressed on the malignant plasma cells that constitute MM. The expression of SLAMF7 by MM cells and lack of expression on nonhematologic cells makes SLAMF7 an attractive therapeutic target for MM. Researchers at the National Cancer Institute (NCI) have invented anti- SLAMF7 CAR constructs that allow genetically-modified T cells to express both the anti-SLAMF7 antibody and a suicide gene that allows T cells to specifically recognize and kill SLAMF7-expressing cells as well as allow for on-demand and reliable elimination of anti-SLAMF7 CAR T cells. NCI seeks licensing and/or co-development partners for this invention.

Anti-Glypican 2 Chimeric Antigen Receptor (CAR) Containing CD28 Hinge And Transmembrane Domains For Treating Neuroblastoma

Chimeric antigen receptor (CAR) T cells that specifically target Glypican 2 (GPC2) are strong therapeutic candidates for patients with neuroblastoma and other GPC2-expressing cancers. The inventors at the National Cancer Institute (NCI) have developed a potent anti-GPC2 (CT3) CAR containing CD28 hinge and transmembrane domains (CT3.28H.BBζ) that is available for licensing and co-development.

Anti-CD133 Monoclonal Antibodies as Cancer Therapeutics

Researchers at NCI developed a rabbit monoclonal antibody that recognizes the marker for CD133 and is useful in pharmacodynamic testing to inform targeted anti-cancer chemotherapy development and clinical monitoring. CD133 is a cell surface glycoprotein used as a marker and expressed in stem cells such as hematopoietic stem cells, endothelial progenitor cells and neural stem cells. The NCI seeks collaborative co-development or licensing partners for this technology.

Angiogenesis-Based Cancer Therapeutic

The National Cancer Institute's Urologic Oncology Branch seeks interested parties to co-develop antagonists to VEGF-A and hepatocyte growth factor (HGF) that block signal transduction and associated cellular responses.

Analogues of Withanolide E Sensitize Cancer Cells Toward Apoptosis

There is a need to develop compounds that can sensitize cancer cells to apoptosis inducing ligands, such as poly I:C and TRAIL. In collaboration with the University of Arizona, NCI investigators discovered a series of compounds in the withanolide family that synergistically enhance the response of cancer cells to treatment with an apoptosis-inducing ligand. The NCI seeks licensing and/or co-development research collaborations for development of withanolide E analogues for the treatment of cancer.

Agonistic Human Monoclonal Antibodies against Death Receptor 4 (DR4)

The National Cancer Institute is seeking parties interested in licensing human monoclonal antibodies (mAbs) that bind to death receptor 4 ("DR4"). The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its functional receptors, DR4 and DR5, have been recognized as promising targets for cancer treatment.

Agonist Epitopes for the Development of a Human Papillomavirus (HPV) Therapeutic Vaccine

To date, there is no FDA-approved therapeutic vaccine for human papillomavirus (HPV). Researchers at the National Cancer Institute (NCI) have discovered agonist epitopes for the development of an HPV therapeutic vaccine. NCI is seeking parties interested in licensing and/or co-developing HPV agonist epitopes that enhance the activation of cytotoxic T lymphocytes (CTL) and lysis of human tumor cells.

A Rapid Method of Isolating Neoantigen-specific T Cell Receptor Sequences

Recent research has demonstrated that neoantigen-specific T-cell receptors (TCRs) can be isolated from a cancer patient’s lymphocytes. These TCRs may be used to engineer populations of tumor-reactive T cells for cancer immunotherapies. Obtaining sequences of these functional TCRs is a critical initial step in preparing this type of personalized cancer treatment; however, current methods are time-consuming and labor-intensive. Scientists at the National Cancer Institute (NCI) have developed a rapid and robust method of isolating the sequences of mutation-specific TCRs to alleviate these issues; they seek licensing and/or co-development research collaborations for the development of a method for isolating the sequences of tumor-reactive TCRs. For collaboration opportunities, please contact Steven A. Rosenberg, M.D., Ph.D. at sar@nih.gov.

Pages