You are here

Share:

Search Technologies

Showing 81-100 of 182 results found

IgG4 Hinge Containing Nanobody-based CARs Targeting GPC3 for Treating Liver Cancer

Scientists at the National Cancer Institute (NCI) developed a potent chimeric antigen receptor (CAR) targeting glypican-3 (GPC3). GPC3 is a cell surface proteoglycan preferentially expressed on Hepatocellular Carcinoma (HCC). The specific HN3 nanobody-IgG4H-CD28TM CAR included in this invention was much more potent both in in vitro cell models and in vivo mouse models. The NCI seeks licensing and/or co-development research collaborations for further development of the anti-GPC3 CAR to treat liver cancer.

Improved Personalized Cancer Immunotherapy

The National Cancer Institute’s Surgery Branch seeks partners interested in collaborative research to co-develop adoptive transfer of tumor infiltrating leukocytes (TIL) for cancers other than melanoma.

In silico design of RNA nanoparticles

The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop RNA nanostructures using computational and synthetic methods.

In vitro Generation of an Autologous Thymic Organoid from Human Pluripotent Stem Cells

The thymus is the only organ capable of producing conventional, mature T cells; a crucial part of the adaptive immune system. However, its efficiency and function are progressively reduced as we age, leading to a compromised immune system in the elderly. Moreover, production of T cells with specific receptors is an important concern for cancer immunotherapy. Current in vitro methods produce immature T cells that are not useful for therapy. Researchers at the National Cancer Institute (NCI) have generated an autologous thymic organoid from human pluripotent stem cells to address this problem. The organoid can be used to develop clinical applications such as production of autologous T and natural killer T (NKT) cells and reconstitution of the adaptive immune system. NCI is seeking licensees for the thymic organoid and the method of its generation to be used in a variety of clinical applications.

Increased Therapeutic Effectiveness of PE-Based Immunotoxins

To improve the therapeutic effectiveness of PE-based immunotoxins through multiple rounds of drug administration, NIH inventors have sought to identify and remove the human B cell epitopes within PE. Previous work demonstrated that the removal of the murine B cell and T cell epitopes from PE reduced the immunogenicity of PE and resulted in immunotoxins with improved therapeutic activity. The National Cancer Institute's Laboratory of Molecular Biology seeks interested parties to co-develop and commercialize immunotoxins using toxin domains lacking human B cell epitopes.

Inhibition of T Cell Differentiation and Senescence by Overexpression of Transcription Factor c-Myb

Researchers at the National Cancer Institute (NCI) have developed a method by which memory T cells can be generated from other T cell populations using overexpression of the transcription factor c-Myb. Importantly, these reprogrammed memory T cells show increased proliferative and survival capacity. This strategy could also potentially generate anti-tumor T cells with improved viability and therapeutic efficacy for adoptive ACT. Researchers at the NCI seek licensing and/or co-development research collaborations for this invention.

Method for Targeted Therapeutic Delivery of Proteins into Cells

The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

Method of Neoantigen-Reactive T Cell Receptor (TCR) Isolation from Peripheral Blood of Cancer Patients

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a novel method for isolation and construction of neoantigen-reactive T-cell receptors (TCRs) from peripheral blood lymphocytes (PBL) of cancer patients. This method generates accurate scoring of single T cells from tumors, as well as facilitates identification and reconstruction of unknown TCRs for immunotherapy.

Methods for Producing Stem Cell-Like Memory T Cells for Use in T Cell-Based Immunotherapies

Researchers at the National Cancer Institute (NCI) seek research & co-development and/or licensees for a novel, ex vivo method by which stem cell-like memory T cells (Tscm) can be generated by stimulating naïve T cells in the presence of inhibitors of GSK-3beta, which are capable of activating the Wnt pathway. These Tscm cells, generated using GSK-3beta inhibitors, display enhanced survival and proliferation upon transfer, have multipotent capacity to generate all memory and effector T cell subsets, and show increased anti-tumor activity in a humanized mouse tumor model.

Methods of preventing tissue ischemia

The National Cancer Institute's Laboratory of Pathology seeks parties interested in licensing or collaborative research to co-develop therapeutics targeting vasodialation.

Methods of Producing Effective T-cell Populations Using Akt Inhibitors

Adoptive cell therapy uses cancer reactive T-cells to effectively treat cancer patients. Producing many persistent T-cells is critical for successful treatments. Researchers at the NCI seek licensing and/or co-development research collaborations for a novel method of producing effective T-cell populations using Akt inhibitors.

Pages