You are here

Share:

Search Technologies

Showing 81-100 of 117 results found

High Affinity Nanobodies Targeting B7-H3 (CD276) for Treating Solid Tumors

Researchers at the National Cancer Institute (NCI) have isolated a panel of anti-CD276 (also called B7-H3) single domain antibodies (also known as nanobodies). These antibodies have a high affinity for CD276-positive tumor cells and have great potential for diagnostic and therapeutic technologies against solid tumors. The NCI seeks licensing and/or co-development research collaborations for CD276-targeting camel nanobodies.

Peptide Hydrogels for Rate-Controlled Delivery of Therapeutics

Scientists at the National Cancer Institute (NCI) have developed a novel delivery platform in which the scaffold of an anionic hydrogel (AcVES3) can be attenuated to deliver therapeutic small molecules, peptides, proteins, nanoparticles, or whole cells. The NCI seeks collaborators and licensees for the development of this technology in various clinical and laboratory applications.

Chimeric Adaptor Proteins (CAPs) Containing a Linker for Activation of T Cells (LAT) and a Kinase Domain for Use in T Cell-Based Immunotherapy

There remains a need for effective immunotherapies to treat solid tumors as well as hematological malignancies. Researchers at the National Cancer Institute (NCI) have designed novel chimeric adaptor proteins (CAPs) consisting of signaling molecules downstream of the T cell receptor (TCR) for use in T cell-mediated immunotherapy. NCI is seeking parties interested in licensing and/or co-developing CAPs that can be used in immunotherapy for treating cancer, including both hematological and solid malignancies.

Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma

Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

Novel Murine T-Cell Receptors for Treating Metastatic Thyroid Cancer

Metastatic thyroid cancer can be resistant to current treatment options such as radioactive iodine therapy. Targeting thyroglobulin, a thyroid-specific antigen, as part of an adoptive cell therapy approach will allow for new therapeutic possibilities. Researchers at the National Cancer Institute (NCI) seek licensing and/or co-development research collaborations for novel T-cell receptors for the treatment of metastatic thyroid cancer.

Methods of preventing tissue ischemia

The National Cancer Institute's Laboratory of Pathology seeks parties interested in licensing or collaborative research to co-develop therapeutics targeting vasodialation.

Bile Acids and Other Agents that Modulate the Gut Microbiome for the Treatment of Liver Cancer

Researchers at the National Cancer Institute (NCI) have discovered that primary bile acids and antibiotics are a novel therapeutic for the treatment of liver cancer and liver metastases. NCI is seeking parties interested in licensing and/or co-developing primary bile acids and antibiotics that have been demonstrated in vivo to attract natural killer T (NKT) cells to the liver and inhibit tumor development.

Angiogenesis-Based Cancer Therapeutic

The National Cancer Institute's Urologic Oncology Branch seeks interested parties to co-develop antagonists to VEGF-A and hepatocyte growth factor (HGF) that block signal transduction and associated cellular responses.

Inhibition of T Cell Differentiation and Senescence by Overexpression of Transcription Factor c-Myb

Researchers at the National Cancer Institute (NCI) have developed a method by which memory T cells can be generated from other T cell populations using overexpression of the transcription factor c-Myb. Importantly, these reprogrammed memory T cells show increased proliferative and survival capacity. This strategy could also potentially generate anti-tumor T cells with improved viability and therapeutic efficacy for adoptive ACT. Researchers at the NCI seek licensing and/or co-development research collaborations for this invention.

T Cell Receptors Targeting p53 Hotspot Mutations and Methods of Isolating the Same

Researchers at the National Cancer Institute (NCI) identified a collection of T Cell Receptors (TCRs) that target specific mutations in the p53 tumor suppressor protein. These TCRs recognize “hotspot” mutations, which frequently occur in a variety of unrelated cancers. These TCRs can be used for a variety of therapeutic, diagnostic and research applications. Researchers at the NCI seek licensing and/or co-development research collaborations for these novel T cell receptors that recognize p53 mutations and methods for identifying p53 mutation-reactive T cell receptors.

The UBE2G2 Binding Domain in the Ubiquitin Ligase GP78 and Methods of Use Thereof

Researchers at the National Cancer Institute (NCI) have developed an invention describing the binding domain (G2BD) for the ubiquitin-conjugating enzyme Ube2G2 in the gp78 ubiqutin ligase protein. The invention involves modulating the interaction between the gp78 protein and the conjugating enzyme Ube2G2. Interruption of this interaction will block degradation from the endoplasmic reticulum (ER), resulting in ER stress, unfolded protein response, and, ultimately, apoptosis in some cancer cells. The NCI seeks licensing and/or co-development partners for this invention.

Near-IR Light-Cleavable Antibody Conjugates and Conjugate Precursors

Researchers at the National Cancer Institute (NCI) developed novel groups of cyanine (Cy) based antibody-drug conjugate (ADC) chemical linkers that undergo photolytic cleavage upon irradiation with near-IR light. By using the fluorescent properties of the Cy linker to monitor localization of the ADC, and subsequent near-IR irradiation of cancerous tissue, drug release could be confined to the tumor microenvironment.

Methods of Producing Thymic Emigrants from Induced Pluripotent Stem Cells

Pluripotent stem cells are a promising source of T cells for a variety of clinical applications. However, current in vitro methods of T cell differentiation result in the generation of cells with aberrant phenotypes. Researchers at the National Cancer Institute (NCI) have now developed methodology for generating induced pluripotent stem cell thymic emigrants (iTE). Antigen-specific CD8αβ+ iTEs exhibited functional properties in vitro that were almost indistinguishable from natural naïve CD8αβ+ T cells, including vigorous expansion and robust anti-tumor activity. iTEs recapitulated many of the transcriptional programs of naïve T cells in vivo and revealed a striking capacity for engraftment, memory formation, and efficient tumor destruction. The NCI seeks licensing and/or co-development research collaborations for this invention.

Self-Assembling Nanoparticles Composed of Transmembrane Peptides and Their Application for Specific Intra-Tumor Delivery of Anti-Cancer Drugs

Researchers at the National Cancer Institute (NCI) seek licensing and/or co-development research collaborations for peptide-based virus-like nanoparticles that are fully synthetic and capable of delivering cytotoxic, radioactive, and imaging agents. The researchers are interested in commercial partners to conduct pre-clinical and pre-IND studies.

Pages