You are here

Share:

Search Technologies

Showing 1-20 of 178 results found

Agonistic Human Monoclonal Antibodies against Death Receptor 4 (DR4)

The National Cancer Institute is seeking parties interested in licensing human monoclonal antibodies (mAbs) that bind to death receptor 4 ("DR4"). The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its functional receptors, DR4 and DR5, have been recognized as promising targets for cancer treatment.

Synergistic Combination Agent for Cancer Therapy

The Nanotechnology Characterization Laboratory of the Frederick National Laboratory for Biomedical Research seeks parties interested in collaborative research to co-develop a ceramide and vinca alkaloid combination therapy for treatment of cancer.

MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors

Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

Improved Personalized Cancer Immunotherapy

The National Cancer Institute’s Surgery Branch seeks partners interested in collaborative research to co-develop adoptive transfer of tumor infiltrating leukocytes (TIL) for cancers other than melanoma.

Human Antibodies Against Middle East Respiratory Syndrome Coronavirus

The National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to co-develop antibody-based therapeutic against MERS-CoV, including animal studies, cGMP manufacturing, and clinical trials.

Cancer Immunotherapy Using Virus-like Particles

A considerable effort has been devoted to identifying and targeting specific extracellular cancer markers using antibody based therapies. However, diminished access to new cancer cell surface markers has limited the development of corresponding antibodies. NCI Technology Transfer Center is seeking to license cancer immunotherapy using virus-like particles.

Methods of preventing tissue ischemia

The National Cancer Institute's Laboratory of Pathology seeks parties interested in licensing or collaborative research to co-develop therapeutics targeting vasodialation.

Chimeric Antigen Receptors to CD276 for Treating Cancer

This licensing opportunity from the National Cancer Institute concerns the development of CARs comprising an antigen-binding fragment derived from the MGA271 antibody. The resulting CARs can be used in adoptive cell therapy treatment for neuroblastoma and other tumors that express CD276.

Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma

Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

Processes for Producing and Purifying Nucleic Acid-Containing Compositions

This technology provides improved processes for production and purification of nucleic acid-containing compositions, such as non-naturally occurring viruses, for example, recombinant polioviruses that can be employed as oncolytic agents. Some of the improved processes relate to improved processes for producing viral DNA template.

Nitroxyl (HNO) Releasing Therapeutics

The National Cancer Institute's Cancer and Inflammation Program is seeking statements of capability or interest from parties interested in licensing therapeutic agents that generate Nitroxyl (HNO) in physiological media.

Immunotherapeutics for Pediatric Solid Tumors

The National Cancer Institute’s Pediatric Oncology Branch seeks partners interested in licensing or collaborative research to co-develop new immunotherapeutic agents based on chimeric antigen receptor (CARs) for the treatment of pediatric solid tumors.

Pages