You are here

Share:

Search Technologies

Showing 21-40 of 182 results found

Anti-CD133 Monoclonal Antibodies as Cancer Therapeutics

Researchers at NCI developed a rabbit monoclonal antibody that recognizes the marker for CD133 and is useful in pharmacodynamic testing to inform targeted anti-cancer chemotherapy development and clinical monitoring. CD133 is a cell surface glycoprotein used as a marker and expressed in stem cells such as hematopoietic stem cells, endothelial progenitor cells and neural stem cells. The NCI seeks collaborative co-development or licensing partners for this technology.

High Affinity Monoclonal Antibodies Targeting Glypican-1

Researchers at the National Cancer Institute (NCI) have isolated two Glypican-1- (GPC1)- specific antibodies: the mouse monoclonal antibody HM2 that binds the C-lobe of GPC1 close to the cell surface, and the camel single domain antibody D4. The D4 single domain antibody (also called ‘nanobody’) has a high affinity for GPC1-positive tumor cells from both human and mouse origins. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

Cancer Therapeutic based on Stimulation of Natural Killer T-cell Anti-tumor Activity

Investigators at the National Cancer Institute''s Vaccine Branch have found that beta-mannosylceramide (Beta-ManCer) promotes immunity in an IFN-gamma independent mechanism and seek statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize beta-ManCer.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

High Affinity Cross Species Single Domain Antibodies Targeting Mesothelin

Researchers at the National Cancer Institute (NCI) have isolated two high affinity anti-mesothelin single domain antibodies (also known as nanobodies), A101 and G8. These antibodies have been isolated from NCI’s newly developed camel single domain (VHH) libraries by phage display. The antibodies have a high affinity for mesothelin-positive tumor cells from both human and mouse origins. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

Use of Acetalax for Treatment of Triple Negative Breast Cancer

The National Cancer Institute (NCI) seeks research co-development and/or potential licensees for a potential novel treatment for triple-negative breast cancer (TNBC) with acetalax (oxyphenisatin acetate). Acetalax is a previously FDA approved drug that has been used as a topical laxative but is being repurposed here as an onco-therapy because of its cytotoxic effects on a number of TNBC and other cancer cell lines.

Use of Cucurbitacins and Withanolides for the Treatment of Cancer

The National Cancer Institute's Laboratory of Experimental Immunology, Cancer Inflammation Program, seeks parties interested in collaborative research to co-develop, evaluate, or commercialize the use of certain cucurbatacins or withanolides in combination with pro-apoptotic agonists of TRAIL death receptors for cancer therapy.

Cancer Immunotherapy Using Virus-like Particles

A considerable effort has been devoted to identifying and targeting specific extracellular cancer markers using antibody based therapies. However, diminished access to new cancer cell surface markers has limited the development of corresponding antibodies. NCI Technology Transfer Center is seeking to license cancer immunotherapy using virus-like particles.

Analogues of Withanolide E Sensitize Cancer Cells Toward Apoptosis

There is a need to develop compounds that can sensitize cancer cells to apoptosis inducing ligands, such as poly I:C and TRAIL. In collaboration with the University of Arizona, NCI investigators discovered a series of compounds in the withanolide family that synergistically enhance the response of cancer cells to treatment with an apoptosis-inducing ligand. The NCI seeks licensing and/or co-development research collaborations for development of withanolide E analogues for the treatment of cancer.

Small Molecule Anti-cancer Agents that Stabilize the MYC-G-Quadruplex

The proto-oncogene c-Myc is deregulated and overexpressed in ~70% of all cancers. Thus, c-Myc is an attractive therapeutic target. Beyond cancer, Myc is also a positive effector of tissue inflammation, and its function has been implicated in the pathophysiology of heart failure. Researchers at the National Cancer Institute (NCI) developed novel small molecules that target c-Myc at the transcriptional level, thus enabling a potential pan-cancer therapeutic. Specifically, these compounds stabilize the transcription repressing quadruplex in the c-Myc gene promoter region. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop these therapeutic targets.'

Platform to Enhance Anti-Tumor Immunity

There is a marked increase in immunosuppressive myeloid progenitors and myeloid cells in tumors and at metastatic tissue sites, rendering these types of cells useful in cancer therapeutics, especially after genetic modifications that improve their anti-tumor properties further. The National Cancer Institute (NCI) seeks research co-development or licensing partners to further develop genetically engineered myeloid cells (GEMys) for use in cancer immunotherapy.

Sensitizing Cancer Cells to DNA Targeted Therapies

Chk2 is a protein kinase activated in response to DNA double strand breaks. In normal tissues, Chk2 phosphorylates and thereby activates substrates that induce programmed cell death, or apoptosis, via interactions with p53, E2F1, PML proteins. In cancer tissues, where apoptosis is suppressed, Chk2 phosphorylates and inactivates cell cycle checkpoints (via interactions with Cdc25, phosphatases and Brca1 proteins), which allows cancer cells to repair and tolerate DNA damage. Hence, Chk2 inhibitors would be expected to protect normal tissues by reducing apoptosis, and to sensitize cancer cells to DNA-targeted agents. The National Cancer Institute seeks licensees for small molecule inhibitors of Chk2 for the treatment of cancer.

Brachyury-directed Vaccine for the Prevention or Treatment of Cancers

Researchers at the NCI have developed a vaccine technology that stimulates the immune system to selectively destroy metastasizing cells. Stimulation of T cells with the Brachyury peptide promote a robust immune response and lead to targeted lysis of invasive tumor cells. NCI seeks licensing or co-development of this invention.

Pages