The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for further development of novel iodonium analogs. These iodonium analogs inhibit NADPH oxidases (NOX) and other flavin dehydrogenases to slow tumor growth.
Scientists at the National Cancer Institute developed a method to identify T cells that specifically recognize immunogenic mutations expressed only by cancer cells. NCI seeks parties interested in collaborative research to co-develop or license T-cell therapy against cancer mutations
Scientists at the National Cancer Institute's Molecular Targets Laboratory have modified the Cnidarin-derived griffithsin compound to have greater storage time and stability. Griffithsin compounds are a class of highly potent proteins capable of blocking the HIV virus from penetrating T cells. The National Cancer Institute seeks parties interested in collaborative research to license or co-develop large-scale recombinant production of the compound.
Researchers at NCI developed a rabbit monoclonal antibody that recognizes the marker for CD133 and is useful in pharmacodynamic testing to inform targeted anti-cancer chemotherapy development and clinical monitoring. CD133 is a cell surface glycoprotein used as a marker and expressed in stem cells such as hematopoietic stem cells, endothelial progenitor cells and neural stem cells. The NCI seeks collaborative co-development or licensing partners for this technology.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for the development of methods that employ the knockout of FGF1 Intracellular Binding Protein (FIBP) to overcome tumor microenvironment suppression against T-cell mediated immunotherapies.
Researchers at the National Cancer Institute have developed a glypican-1 (GPC1) chimeric antigen receptor (CAR)-T cells using short immunoglobin subclass 4 (IgG4) hinge sequences that are highly potent against GPC1-expressing tumors. NCI seeks research co-development partners and/or licensees to advance the development of GPC1-IgG4 hinge CARs for the treatment of pancreatic cancer and other GPC1-expressing tumors.
The National Cancer Institute (NCI) developed Chimeric Antigen Receptors (CAR)-T Cells specifically targeting the unshed portion (“stalk”) of mesothelin in mesothelioma and other tumors. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these inventions for immunotherapy
Antibodies that specifically recognize and bind to the unshed portion (“stalk”) of human mesothelin are strong therapeutic candidates because they maintain contact with the cancer cell for a longer duration than other anti-mesothelin antibodies that are currently available. The National Cancer Institute (NCI) has developed such antibodies that specifically recognize and bind to the stalk of human mesothelin with high affinity. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.
Researchers at the National Cancer Institute’s Experimental Transplantation and Immunology Branch (NCI ETIB) developed a T Cell receptor that specifically targets the Kita-Kyushu Lung Cancer Antigen 1 (KK-LC-1) 52-60 epitope that is highly expressed by several common and aggressive epithelial tumor types.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for the development of an anti-deacetylated poly-N-acetyl glucosamine (dPNAG) antibody for use as an antimicrobial agent.