You are here

Share:

Search Technologies

Showing 81-100 of 119 results found

Novel Murine T-Cell Receptors for Treating Metastatic Thyroid Cancer

Metastatic thyroid cancer can be resistant to current treatment options such as radioactive iodine therapy. Targeting thyroglobulin, a thyroid-specific antigen, as part of an adoptive cell therapy approach will allow for new therapeutic possibilities. Researchers at the National Cancer Institute (NCI) seek licensing and/or co-development research collaborations for novel T-cell receptors for the treatment of metastatic thyroid cancer.

Novel Regulatory B cells for Treatment of Cancer and Autoimmune Disease

Cancer cells have been found to directly activate resting B cells to form suppressive regulatory B cells (tBregs) and utilize them to evade immune surveillance and mediate metastasis. tBregs directly inhibit CD4+ and CD8+ T cell activity in a cell contact-dependent manner, induce FoxP3+ T cell activity, and promote Treg-dependent metastasis. The National Institute on Aging's Immunotherapeutics Unit, is seeking parties interested in licensing or co-development of regulatory B cells to control autoimmune diseases and strategies that inactivate tBregs to control cancer immune escape. 

Nucleic Acid Nanoparticles for Triggering RNA Interference

RNA interference (RNAi) is a naturally occurring cellular post-transcriptional gene regulation process that utilizes small double-stranded RNAs to trigger and guide gene silencing. By introducing synthetic RNA duplexes called small-interfering RNAs (siRNAs), we can harness the RNAi machinery for therapeutic gene control and the treatment of various diseases. The National Cancer Institute seeks partners to license or co-develop RNA, RNA-DNA, and DNA-RNA hybrid nanoparticles consisting of a DNA or RNA core with attached RNA or DNA hybrid duplexes.

Overexpression of Phf19 on T Cells Enhances Therapeutic Effects of T Cell-Based Therapies (such as Chimeric Antigen Receptor [CAR] Therapies)

Researchers at the National Cancer Institute (NCI) have developed a method to epigenetically reprogram CD8+ T cell fate by expressing elevated levels of the polycomb-like protein, Phf19. This technology is useful for improving T cell-based immunotherapies (such as CAR therapies) to treat a range of infectious diseases and cancers. NCI seeks licensing or co-development partners for this invention.

Peptide Inhibitors for Viral Infections and as Anti-inflammatory Agents

IFN-gamma and IL-10 are cytokine signaling molecules that play fundamental roles in inflammation, cancer growth and autoimmune diseases.  Unfortunately, there are no specific inhibitors of IFN-gamma or IL-10 on the market to date. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop selective IL-10 and IFN-gamma peptide inhibitors.

Polymeric Delivery Platform for Therapeutics

The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for a polymeric drug delivery platform that targets scavenger receptor A1 (SR-A1), a receptor highly expressed in macrophages, monocytes, mast cells, dendritic cells (myeloid lineages), and endothelial cells. The platform delivers various immunomodulatory therapeutic cargo including small molecule drugs, therapeutic peptides, and vaccines, to the lymphatic system and myeloid/antigen presenting cell (APC) sub-populations.

Polypeptides for Stimulation of Immune Response (Adjuvants)

Researchers at the National Cancer Institute, Laboratory of Molecular Immunoregulation developed compositions and methods for using HMGN and its derivatives as immunoadjuvants with microbial or tumor antigens.The National Cancer Institute, Laboratory of Molecular Immunoregulation seeks parties interested in licensing or collaborative research to co-develop polypeptides or antagonists for immune response regulation.

Potassium Hydroxy Citrate Promotes Longevity and Efficacy of Anti-Tumor T cells for Adoptive Cell Therapy (ACT)

Adoptive cell therapy (ACT) using tumor-specific T cells leads to complete tumor regression in some cancer patients. However, limiting the efficacy of this therapy is that T cells become functionally exhausted and have short half-lives after adoptive transfer. Researchers at the National Cancer Institute (NCI) have discovered a novel method to generate long-lived memory tumor-specific T cells with enhanced tumor clearance and persistence upon in vivo transfer. NCI is seeking parties interested in licensing and/or co-developing potassium hydroxy citrate to promote longevity and efficacy of tumor-specific T cells.

RP2 and RPGR Vectors For Treating X-linked Retinitis Pigmentosa

The National Eye Institute (NEI) seek research co-development or licensees for advancing AAV8/9-based therapies for X-linked forms of retinitis pigmentosa (XLRP) caused by mutations in RPGR (retinitis pigmentosa GTPase regulator) or RP2 (retinitis pigmentosa 2) gene.

Selective estrogen-receptor modulators (SERMs) confer protection against photoreceptor degeneration

Researchers at the National Eye Institute (NEI) have discovered a novel therapeutic strategy of using one or more selective estrogen-receptor modulators (SERMs), which may include the FDA-approved drug, Tamoxifen, for treating retinal degenerative diseases, like retinitis pigmentosa (RP) and age-related degeneration (AMD). SERMs exert their specific protection on photoreceptor degeneration likely by inhibiting microglial activation.

Self-Assembling Nanoparticles Composed of Transmembrane Peptides and Their Application for Specific Intra-Tumor Delivery of Anti-Cancer Drugs

Researchers at the National Cancer Institute (NCI) seek licensing and/or co-development research collaborations for peptide-based virus-like nanoparticles that are fully synthetic and capable of delivering cytotoxic, radioactive, and imaging agents. The researchers are interested in commercial partners to conduct pre-clinical and pre-IND studies.

Small Molecule Inhibitors of Drug Resistant Forms of HIV-1 Integrase

Researchers at the National Cancer Institute discovered small-molecule compounds containing 1-hydroxy-2-oxo-1,8-naphthyridine moieties whose activity against HIV-1 integrase mutants confer resistance to currently approved INSTIs. Preliminary rodent efficacy, metabolic, and pharmacokinetic studies have been completed by the NCI researchers. The National Cancer Institute seeks partners to commercialize this class of compounds through licensing or co-development.

Sterculic Acid Treatment for Choroidal Neovascularization

The National Eye Institute (NEI) Laboratory of Retinal Cell and Molecular Biology is seeking parties interested in licensing use of sterculic acid and its derivatives for the treatment of diseases related to angiogenesis or mediated by 7-ketocholesterol-induced inflammation, in particular, atherosclerosis, age-related macular degeneration, and Alzheimer''s disease.

Synergistic Combination Agent for Cancer Therapy

The Nanotechnology Characterization Laboratory of the Frederick National Laboratory for Biomedical Research seeks parties interested in collaborative research to co-develop a ceramide and vinca alkaloid combination therapy for treatment of cancer.

Synthetic lipopeptide inhibitors of RAS oncoproteins

It is well known that overactive Ras signaling is linked to many forms of cancer, and despite intensive efforts worldwide to develop effective inhibitors of Ras, to date there is no anti-Ras inhibitor in clinical use. Researchers at the NCI’s Cancer and Inflammation Program, in collaboration with scientists at Vanderbilt University and the University of Illinois in Chicago, have identified a number of small peptidomimetic compounds that bind to Ras proteins with nanomolar affinity. NCI’s Cancer and Inflammation Program seeks partners interested in licensing or co-development of synthetic, highly potent cell-permeable inhibitors of Ras that bind to the protein directly.

Pages