You are here

Share:

Search Technologies

Showing 1-7 of 7 results found

Atypical Inhibitors of Monoamine Transporters; Method of Making; and Use Thereof

The technology is a series of modafinil analogues that bind with moderate to high affinity to the dopamine (DA) transporter (DAT). Some compounds also have affinity for the serotonin (5-HT) transporter (SERT) and/or sigma-1 receptor. The compounds retain the desired dopamine transporter affinity with greater metabolic stability over previously described unsubstituted piperazine ring analogues. Importantly, these compounds have no predicted addictive liability. Also disclosed are methods for treating substance use disorders as well as other neuropsychiatric disorders such as ADHD, depression, narcolepsy, and cognitive impairment. Researchers at the National Institute on Drug Abuse (NIDA) seek licensing and/or co-development research collaborations for further development and commercialization of the compounds.

Methods of preventing tissue ischemia

The National Cancer Institute's Laboratory of Pathology seeks parties interested in licensing or collaborative research to co-develop therapeutics targeting vasodialation.

Methods of Treating or Preventing Demyelation Using Thrombin Inhibitors

Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (“NICHD”), seek CRADA partner or collaboration for development of agents to treat multiple sclerosis or other conditions associated with myelin remodeling by administering an agent that inhibits cleavage of Neurofascin 155 or Caspr1. The agent could be a thrombin inhibitor, an agent that inhibits thrombin expression, an anti-thrombin antibody that specifically inhibits thrombin mediated cleavage of Neurofascin 155, a mutated version or fragment of Neurofascin 155 or Caspr1, or antibodies to Neurofascin 155 or Caspr1.

Targeted RNA/DNA Nanoparticles with Single Stranded RNA Toeholds

The technology is directed to the use of single-stranded RNA overhangs or toeholds of varying lengths (< 12 nucleotides) contained in nucleic acid-based nanoparticles which trigger the association of these nanoparticles and activates multiple functionalities such as gene silencing and/or cell-specific targeting. The use of RNA toeholds is superior to that of DNA toeholds in that it allows for smaller nanoparticles (fewer nucleotides for the toeholds) resulting in greater chemical stability, less immunogenic and higher yield of production. The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for use of RNA overhangs or toeholds in nucleic acid nanoparticles.