You are here

Share:

Search Technologies

Showing 21-40 of 60 results found

Highly Soluble Pyrimido-Dione-Quinoline Compounds: Small Molecules that Stabilize and Activate p53 in Transformed Cells

Researchers at the National Cancer Institute (NCI) have developed an invention reporting the composition and function of a pyrimido-dione-quinoline that was found to inhibit HDM2’s ubiquitin ligase (E3) activity without accompanying genotoxicity. The current invention results in the stabilization of p53 in cells through the inhibition of its ubiquitin-mediated proteasomal degradation resulting in a robust p53 response in tumors. NCI researchers seek licensing and/or co-development partners for this invention.

Human Antibodies Against Middle East Respiratory Syndrome Coronavirus

The National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to co-develop antibody-based therapeutic against MERS-CoV, including animal studies, cGMP manufacturing, and clinical trials.

Human Monoclonal Antibodies Against Dengue Viruses

Researchers at NCI's  Cancer and Inflammation Program developed fully human monoclonal antibodies that bind and neutralize dengue type 1, 2, 3 and 4 viruses. The National Cancer Institute's Cancer and Inflammation Program seeks parties interested in licensing fully human monoclonal antibodies as possible therapeutics and prophylactics, as well as a template for a Dengue vaccine.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

Immunogenic Antigen Selective Cancer Immunotherapy

Researchers at the National Institute on Aging working on cancer immunotherapy and detection report the use of SPANX-B polypeptides in the treatment and identification of cancer. Specific human malignancies targeted for the treatments disclosed include melanoma and lung, colon, renal, ovarian and breast carcinomas. The NIA seeks parties interested in licensing or collaborative research to further develop, evaluate, or commercialize SPANX-B polypeptides in the treatment and identification of cancer.

Improved Personalized Cancer Immunotherapy

The National Cancer Institute’s Surgery Branch seeks partners interested in collaborative research to co-develop adoptive transfer of tumor infiltrating leukocytes (TIL) for cancers other than melanoma.

Increased Therapeutic Effectiveness of PE-Based Immunotoxins

To improve the therapeutic effectiveness of PE-based immunotoxins through multiple rounds of drug administration, NIH inventors have sought to identify and remove the human B cell epitopes within PE. Previous work demonstrated that the removal of the murine B cell and T cell epitopes from PE reduced the immunogenicity of PE and resulted in immunotoxins with improved therapeutic activity. The National Cancer Institute's Laboratory of Molecular Biology seeks interested parties to co-develop and commercialize immunotoxins using toxin domains lacking human B cell epitopes.

Ketamine Metabolites for the Treatment of Depression and Pain

The National Institute on Aging, Laboratory of Clinical Investigation, is seeking parties interested in collaborative research to co-develop ketamine metabolites for the treatment of different forms of depression and for alleviating pain.

Metformin for the Treatment of Age-related Retinal Degeneration

Researchers at the National Eye Institute (NEI) have generated Induced Pluripotent Stem Cells (iPS) from two Late-Onset Reginal (L-ORD) patients with a dominant mutation in CTRP5 protein and two of their unaffected siblings. All iPS cells were differentiated into authenticated Retinal Pigment Epithelium (RPE) cells. The NEI seeks licensing and/or co-development research collaborations for Metformin as an FDA-approved drug to treat Age-related Retinal Degeneration.

MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors

Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

New T-Cell Immunotherapy that Targets Aggressive Epithelial Tumors

Researchers at the National Cancer Institute’s Experimental Transplantation and Immunology Branch (NCI ETIB) developed a T Cell receptor that specifically targets the Kita-Kyushu Lung Cancer Antigen 1 (KK-LC-1) 52-60 epitope that is highly expressed by several common and aggressive epithelial tumor types.

Nitroxyl (HNO) Releasing Therapeutics

The National Cancer Institute's Cancer and Inflammation Program is seeking statements of capability or interest from parties interested in licensing therapeutic agents that generate Nitroxyl (HNO) in physiological media.

Novel HPPK (Bacterial Protein) Inhibitors for Use as Antibacterial Agents

Researchers at the National Cancer Institute (NCI) have developed several novel small-molecule inhibitors directed against HPPK, a bacterial protein, as potential antimicrobial agents. The NCI seeks co-development partners or licensees to further develop these novel small-molecule HPPK inhibitors as broad-spectrum bactericidal agents.

Novel Small Molecule Antagonists Targeting Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Long Non-coding RNA (lncRNA) as Anticancer Agents

Researchers at the National Cancer Institute (NCI) have developed an invention describing compounds that bind and alter the nuclear copy number of a long non-coding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), with the proposed consequence of inducing slower tumor growth and a reduction in metastasis. The NCI seeks licensing and/or co-development research collaborations for novel small molecule antagonists targeting MALAT1 lncRNA as anticancer agents.

Pages