You are here

Share:

Search Technologies

Showing 41-60 of 61 results found

Peptide Mimetic Ligands of Polo-like Kinase 1 Polo Box Domain (“Plk1 PBD Portfolio”)

Researchers at the National Cancer Institute (NCI) have developed peptidomimetic inhibitors that disrupt Polo-like kinase 1 (Plk1)-mediated protein interactions by targeting polo-box domain (PBD). These compounds are designed to selectively cause mitotic arrest in cancer cells with abnormal Plk1 expression. Researchers seek licensing and/or co-development research collaborations to further develop the inhibitors.

A Triple Combination HIV Microbicide

Three anti-HIV proteins- the antiviral lectin cyanovirin, the antiviral lectin griffithsin, and the monoclonal antibody 2G12- have been successfully expressed in the same rice seed. The co-expression allows for a low cost, stable production method for a triple anti-HIV microbicide for the prevention of HIV. The National Cancer Institute (NCI) seeks licensees for the invention microbicide and production method.

Single domain CD4, HIV-1 Antibodies, and Fusion Proteins for treatment of HIV

Researchers at the National Cancer Institute (NCI) have developed single domain human CD4 proteins to inhibit HIV-1 entry and improved human domain antibodies against HIV-1. Fusion proteins comprising the single domain CD4 and HIV-1 antibody can be used to effectively neutralize HIV-1 in vitro. Researchers seek licensing for development of these antibody-based therapeutics for the treatment of HIV-1.

Highly Soluble Pyrimido-Dione-Quinoline Compounds: Small Molecules that Stabilize and Activate p53 in Transformed Cells

Researchers at the National Cancer Institute (NCI) have developed an invention reporting the composition and function of a pyrimido-dione-quinoline that was found to inhibit HDM2’s ubiquitin ligase (E3) activity without accompanying genotoxicity. The current invention results in the stabilization of p53 in cells through the inhibition of its ubiquitin-mediated proteasomal degradation resulting in a robust p53 response in tumors. NCI researchers seek licensing and/or co-development partners for this invention.

High Affinity Monoclonal Antibodies Targeting Glypican-2 for Treating Childhood Cancers

Cancer therapies that specifically target Glypican 2 (GPC2) are strong therapeutic candidates for pediatric patients with neuroblastoma and other GPC2 expressing cancers. The inventors at the National Cancer Institute (NCI) have developed and isolated two new antibodies that target GPC2 (CT3 and CT5) that are available for licensing and co-development.

Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

Chimeric Antigen Receptors (CARs) are engineered proteins that can be used in a therapeutic capacity when expressed by an immune cell (e.g., a T cell). Specifically, CARs comprise a targeting domain (such as an antibody or binding fragment thereof) as well as domains that activate immune cells. By selecting a targeting domain that binds to a protein that is selectively expressed on a cancer cell, it is possible to target immune cells to the cancer cells. Upon binding to the target cell, the immune cells are activated, leading to the destruction of the cancer cell. This therapeutic approach holds great promise, as evidenced by the recent FDA-approval of CAR-T cell therapies, KYMRIAH and YESCARTA, both of which target CD19.

Novel Small Molecule Antagonists Targeting Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Long Non-coding RNA (lncRNA) as Anticancer Agents

Researchers at the National Cancer Institute (NCI) have developed an invention describing compounds that bind and alter the nuclear copy number of a long non-coding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), with the proposed consequence of inducing slower tumor growth and a reduction in metastasis. The NCI seeks licensing and/or co-development research collaborations for novel small molecule antagonists targeting MALAT1 lncRNA as anticancer agents.

Novel Small Molecules that Inhibit Hepatitis B Virus Replication by Targeting Packaging of Pre-genomic RNA

Researchers at the National Cancer Institute (NCI) have developed an invention describing novel small molecule agonists of a previously unidentified hepatitis B virus (HBV) RNA packaging signal (pgRNA) as promising therapeutic strategies for HBV infections, either alone or in combination with other antiviral agents. The NCI seeks licensing and/or co-development research collaborations for these novel small molecules that inhibit hepatitis B virus replication by targeting pre-genomic RNA.

Metformin for the Treatment of Age-related Retinal Degeneration

Researchers at the National Eye Institute (NEI) have generated Induced Pluripotent Stem Cells (iPS) from two Late-Onset Reginal (L-ORD) patients with a dominant mutation in CTRP5 protein and two of their unaffected siblings. All iPS cells were differentiated into authenticated Retinal Pigment Epithelium (RPE) cells. The NEI seeks licensing and/or co-development research collaborations for Metformin as an FDA-approved drug to treat Age-related Retinal Degeneration.

Novel HPPK (Bacterial Protein) Inhibitors for Use as Antibacterial Agents

Researchers at the National Cancer Institute (NCI) have developed several novel small-molecule inhibitors directed against HPPK, a bacterial protein, as potential antimicrobial agents. The NCI seeks co-development partners or licensees to further develop these novel small-molecule HPPK inhibitors as broad-spectrum bactericidal agents.

Reprogrammed Tumor Infiltrated Lymphocytes for Efficient Identification of Tumor-Antigen Specific T-Cell Receptors

Adoptive T Cell Therapy (ACT) has proven to effectively treat established tumors. This treatment consists of harvesting Tumor Infiltrated Lymphocytes (TIL) which specifically recognize cancer, expanding the tumor-specific TIL in vitro, and then reinfusing these cells into the patient for treatment. Both these lymphocytes and their T cell receptors (TCR) are valuable for cancer immunotherapy. Inventors from the National Cancer Institute (NCI) have developed an improved method to identify tumor-specific TCRs by reprogramming TIL into stem cells. This invention is available to license further development.

EGFRvIII Antibodies for the Treatment of Human Cancer

Researchers at the National Cancer Institute (NCI) have isolated seven monoclonal antibodies that bind to the human epidermal growth factor receptor variant III (EGFRvIII) but not wildtype EGFR. The NCI seeks research co-development partners or licensees for monoclonal antibodies that specifically target cancer-expressed EGFR.

Method of Neoantigen-Reactive T Cell Receptor (TCR) Isolation from Peripheral Blood of Cancer Patients

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a novel method for isolation and construction of neoantigen-reactive T-cell receptors (TCRs) from peripheral blood lymphocytes (PBL) of cancer patients. This method generates accurate scoring of single T cells from tumors, as well as facilitates identification and reconstruction of unknown TCRs for immunotherapy.

Extremely Rapid Method to Isolate Neoantigen Reactive T Cell Receptors (TCRs)

Researchers at the National Cancer Institute (NCI) have developed a novel method for identifying neoantigen reactive T cells and T cell receptors (TCRs), isolated from fresh tumors of common epithelial cancers. This highly specific and sensitive method allows rapid determination of the neoantigen reactive TCR sequences and can be very useful to translate this information into TCR-engineered T-cell populations for immunotherapy without the need to grow tumor infiltrating T-cells and expensive, time-consuming screening. The NCI seeks research co-development partners and/or licensees for this invention.

Pages