You are here

Share:

Search Technologies

Showing 1-15 of 15 results found

T-cell Receptor Targeting Human Papillomavirus-16 E6 Oncoprotein

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a T-cell receptor (TCR) that confers high-avidity recognition of the HPV-specific oncoprotein E6. The TCR may be used in an adoptive cell therapy approach utilizing genetically engineered lymphocytes to treat HPV-positive malignancies.

Oligonucleotide Production Process

This technology provides improved processes for production and purification of nucleic acid-containing compositions, such as non-naturally occurring viruses, for example, recombinant polioviruses that can be employed as oncolytic agents. Some of the improved processes relate to improved processes for producing viral DNA template.

T Cell Receptors Targeting p53 Mutations for Cancer Immunotherapy and Adoptive Cell Therapy

Researchers at the National Cancer Institute identified a collection of TCRs that exclusively recognize the common hotspot driver mutations in p53 tumor suppressor, expressed by a variety of human cancers, including colorectal, breast and lung cancers. The mutated p53 variants are recognized by the TCRs in the context of specific Class I/Class II HLA alleles. These TCRs can be used for a variety of experimental therapeutic, diagnostic and research applications.'

T-Cell Therapy Against Patient-Specific Cancer Mutations

Scientists at the National Cancer Institute's Surgery Branch developed a method to identify T cells that specifically recognize immunogenic mutations expressed only by cancer cells. The NCI seeks parties interested in collaborative research to co-develop or license T-cell therapy against cancer mutations.

T-Cell Therapy Against Patient-Specific Cancer Mutations

Scientists at the National Cancer Institute developed a method to identify T cells that specifically recognize immunogenic mutations expressed only by cancer cells. NCI seeks parties interested in collaborative research to co-develop or license T-cell therapy against cancer mutations

Levonorgestrel Butanoate Formulation and Methods Relating Thereto

The National Institute of Child Health and Human Development (NICHD) seeks licensees and/or research co-development partners for the development of an injectable contraceptive for women with a pharmaceutical formulation containing levonorgestrel butanoate (LB), a steroidal progestin.

T-cell Receptor Targeting Human Papillomavirus-16 E7 Oncoprotein

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a T-cell receptor (TCR) that confers high-avidity recognition of the HPV-specific oncoprotein E7. The TCR may be used in an adoptive cell therapy approach utilizing genetically engineered lymphocytes to treat HPV-positive malignancies.

T Cell Receptors Targeting KRAS Mutants for Cancer Immunotherapy/Adoptive Cell Therapy

Researchers at the National Institutes of Health identified a collection of TCRs that exclusively recognize the common hotspot driver mutations in KRAS antigen, expressed by a variety of epithelial cancers, including pancreatic, colorectal and lung cancer. The mutated KRAS variants are recognized by the TCRs in the context of specific Class I/Class II HLA alleles. These TCRs can be used for a variety of experimental therapeutic, diagnostic and research applications.

Topical Sodium Nitrate Ointment for Sickle Cell Disease

The National Institutes of Health, through The National Institutes of Health - Clinical Center (NIH-CC) and the National Heart Lung and Blood Institute (NHLBI), seeks licensing and/or co-development partners for a nitric oxide cream for the treatment of ulcers associated with sickle cell disease.

Therapeutics for Neurodegenerative Disorders and Cancer Using Lenalidomide Analogs

Novel thalidomide analogs and their use as immunomodulatory agents are disclosed in this invention by scientists at the National Institute on Aging (NIA). These therapeutic compounds could reduce chronic systemic and central nervous system inflammation. The NIA seeks licensing or co-development partners to commercialize this technology.

Dual Specific Anti-CD22 Anti-CD19 Bicistronic Chimeric Antigen Receptors (CARs)

Inventors at the National Cancer Institute (NCI) have developed chimeric antigen receptors (CARs) that target two B cell surface antigens, CD19 and CD22, improving treatment of B-cell malignancies, such as acute lymphoblastic leukemia (ALL). NCI is actively seeking parties interested in licensing this invention to commercialize the bicistronic CAR construct targeting CD19 and CD22 for immunotherapy.