You are here

Share:

Search Technologies

Showing 41-60 of 256 results found

Cancer-reactive T cells from Peripheral Blood

T-cells capable of reacting to mutations in cancer patients have potential use as therapeutics. Identifying and isolating these cells from patients is a crucial step in developing these treatments. Researchers at the National Cancer Institute (NCI) have developed a novel method of isolating mutation-reactive T-cells from a patient’s peripheral blood lymphocytes (PBL). The NCI, Surgery Branch, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize this method of isolating mutation-reactive T-cells from peripheral blood.

CD206 Small Molecule Modulators, Their Use and Methods for Preparation

Researchers at the National Cancer Institute (NCI) have discovered a small molecule that binds to CD206 and activates M2-like tumor associated macrophages resulting in innate and adaptive anti-tumor responses. NCI seeks research co-development or licensees for CD206 small molecule modulators as a therapeutic for CD206-expressing cancers (such as pancreatic, sarcoma, head and neck, lung, gastric, triple negative breast, renal cell, colorectal cancer, melanoma).

Chimeric Adaptor Proteins (CAPs) Containing a Linker for Activation of T Cells (LAT) and a Kinase Domain for Use in T Cell-Based Immunotherapy

There remains a need for effective immunotherapies to treat solid tumors as well as hematological malignancies. Researchers at the National Cancer Institute (NCI) have designed novel chimeric adaptor proteins (CAPs) consisting of signaling molecules downstream of the T cell receptor (TCR) for use in T cell-mediated immunotherapy. NCI is seeking parties interested in licensing and/or co-developing CAPs that can be used in immunotherapy for treating cancer, including both hematological and solid malignancies.

Chimeric Antigen Receptors that Recognize Mesothelin for Cancer Immunotherapy

Researchers at the NCI have developed chimeric antigen receptors (CARs) with a high affinity for mesothelin to be used as an immunotherapy to treat pancreatic cancer, ovarian cancer, and mesothelioma. Cells that express CARs, most notably T cells, are highly reactive against their specific tumor antigen in an MHC-unrestricted manner to generate an immune response that promotes robust tumor cell elimination when infused into cancer patients.

Chimeric Antigen Receptors to CD276 for Treating Cancer

This licensing opportunity from the National Cancer Institute concerns the development of CARs comprising an antigen-binding fragment derived from the MGA271 antibody. The resulting CARs can be used in adoptive cell therapy treatment for neuroblastoma and other tumors that express CD276.

Combination Cancer Therapy with HDAC Inhibitors

NCI researchers developed a combination therapy of histone deacetylase (HDAC) inhibitors and immunotherapies, such as checkpoint inhibitors, virus-based vaccines, monoclonal antibodies, cell-based treatments or radiopharmaceuticals. The NCI Laboratory of Tumor Immunology and Biology seeks parties to license or co-develop this method.

Combination of Near Infrared Photoimmunotherapy Targeting Cancer Cells and Host-Immune Activation

Investigators at the National Cancer Institute (NCI) seek co-development partners and/or licensees for a new therapeutic approach that selectively targets cancer cells and prevents tumor regrowth. The novel method combines antibody-IR700 molecules and Near-Infrared Photo Immunotherapy (NIR-PIT), which has shown great potential in targeting tumors via a host immunogenic response, with already known and available anti-cancer immunomodulators to further enhance the antitumor response. The investigators have shown in mouse models that, when used in combination, NIR-PIT-treatment and standard antitumor agents conferred a potent vaccine-like effect, not only curing mice of local and distant cancers but successfully immunizing them against tumor regrowth.

Compounds that Interfere with the Androgen Receptor Complex

NCI researchers have identified novel compounds that inhibit FKBP52-mediated activation of the androgen receptor protein (AR), a major target for anti-prostate cancer therapeutic development. As FKBP52 is implicated in the regulation of other hormone receptors, anti-FKBP52 may be applicable in the treatment of hormone-dependent diseases such as diabetes or even used as contraceptives. NCI seeks partners to license or co-develop this technology.

Cyclic Peptides as Non-Hormonal Male Contraceptive Agents and Methods of Use Thereof

The National Institute of Child Health and Human Development (NICHD) seeks licensees and/or research co-development partners for the development of cyclic peptides or peptidomimetic molecules as potential non-hormonal contraceptives for males. The cyclic peptides disrupt spermatogenesis by inhibiting the phosphorylation of GRTH/DDX25 (gonadotropin-regulated testicular helicase).

Pages