You are here

Share:

Search Technologies

Showing 201-217 of 217 results found

Chimeric Adaptor Proteins (CAPs) Containing a Linker for Activation of T Cells (LAT) and a Kinase Domain for Use in T Cell-Based Immunotherapy

There remains a need for effective immunotherapies to treat solid tumors as well as hematological malignancies. Researchers at the National Cancer Institute (NCI) have designed novel chimeric adaptor proteins (CAPs) consisting of signaling molecules downstream of the T cell receptor (TCR) for use in T cell-mediated immunotherapy. NCI is seeking parties interested in licensing and/or co-developing CAPs that can be used in immunotherapy for treating cancer, including both hematological and solid malignancies.

CD19/CD22 Dual Target Chimeric Antigen Receptors to Treat Human B-cell Malignancies

Inventors at the National Cancer Institute (NCI) have developed chimeric antigen receptors (CARs) that target two B cell surface antigens, CD19 and CD22, improving treatment of B-cell malignancies, such as acute lymphoblastic leukemia (ALL). NCI is actively seeking parties interested in licensing this invention to commercialist the bicistronic CAR construct targeting CD19 and CD22 for immunotherapy.

Autophagy Modulators For Use in Treating Cancer

Investigators from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) have identified five autophagy-inhibiting compounds (WX8 family) through a high-throughput screening. The NICHD seeks licensees and/or co-development partners for methods to treat cancer by administering these autophagy-inhibiting compounds.

Use of the TP5 Peptide for the Treatment of Cancer

Increased cyclin-dependent kinase 5 (CDK5) activity has recently emerged as a contributor to cancer progression. Researchers at the National Cancer Institute (NCI) and at the National Institute of Neurological Disorders and Stroke (NINDS) have shown that TP5, a small peptide inhibitor of CDK5 modified to facilitate passage through the blood brain barrier (BBB), has potential therapeutic benefit in glioblastoma (GBM) and colorectal carcinoma (CRC). NCI is seeking parties interested in co-developing and/or licensing TP5 for its use in the treatment of cancers with aberrant CDK5 expression as a mono-therapy or in an adjuvant setting with current standard-of-care.

Novel HPPK (Bacterial Protein) Inhibitors for Use as Antibacterial Agents

Researchers at the National Cancer Institute (NCI) have developed several novel small-molecule inhibitors directed against HPPK, a bacterial protein, as potential antimicrobial agents. The NCI seeks co-development partners or licensees to further develop these novel small-molecule HPPK inhibitors as broad-spectrum bactericidal agents.

Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage

In collaboration with the National Cancer Institute (NCI), researchers at The Eunice Kennedy Shriver National Institute on Child Health and Human Development (NICHD) have discovered monoclonal antibodies that bind to matrilin-3, a protein specifically expressed in cartilage tissue, that could be used for treating or inhibiting growth plate disorders, such as a skeletal dysplasia or short stature. The monoclonal antibodies can also be used to target therapeutic agents, such as those for anti-arthritis, to cartilage tissue. NICHD seeks statements of capability or interest from parties interested in collaborative research to co-develop, evaluate, and/or commercialize treatment of skeletal disorders using targeting antibodies.

T Cell Receptors (TCRs) Specific for Mutant p53

National Cancer Institute (NCI) researchers have isolated T cell receptors (TCRs) reactive to the highly prevalent p53-R175H mutant in the context of the human leukocyte antigen (HLA) class II allele, HLA-DRB1*13:01. These TCRs can be used for a variety of therapeutic, diagnostic, and research applications. NCI seeks licensing and/or co-development research collaborations for TCRs that recognize the p53-R175H mutation and the associated HLA allele, and methods for identifying p53 mutation-reactive T cell receptors.

Genetically Engineered Myeloid Cells (GEMys) as a Platform to Enhance Anti-Tumor Immunity

There is a marked increase in immunosuppressive myeloid progenitors and myeloid cells in tumors and at metastatic tissue sites, rendering these types of cells useful in cancer therapeutics, especially after genetic modifications that improve their anti-tumor properties further. The National Cancer Institute (NCI) seeks research co-development or licensing partners to further develop genetically engineered myeloid cells (GEMys) for use in cancer immunotherapy.

In vitro Generation of an Autologous Thymic Organoid from Human Pluripotent Stem Cells

The thymus is the only organ capable of producing conventional, mature T cells; a crucial part of the adaptive immune system. However, its efficiency and function are progressively reduced as we age, leading to a compromised immune system in the elderly. Moreover, production of T cells with specific receptors is an important concern for cancer immunotherapy. Current in vitro methods produce immature T cells that are not useful for therapy. Researchers at the National Cancer Institute (NCI) have generated an autologous thymic organoid from human pluripotent stem cells to address this problem. The organoid can be used to develop clinical applications such as production of autologous T and natural killer T (NKT) cells and reconstitution of the adaptive immune system. NCI is seeking licensees for the thymic organoid and the method of its generation to be used in a variety of clinical applications.

Efficient Methods to Prepare Hematopoietic Progenitor Cells in vitro for Therapeutic Use

Multi-potential hematopoietic progenitor cells (HPC) can differentiate into any class of blood cells, and are highly useful in regenerative medicine, immunology, and cancer immunotherapy. Current methods to generate HPCs are limited either due to the use of animal products, or the high cost and low efficiency of animal product free systems. Researchers at the National Cancer Institute (NCI) have developed a protocol to prepare HPCs from human induced pluripotent stem cells (hiPSC), using human mesenchymal stem cells (hMSC) in a three-dimensional (3D) co-culture condition. Thus, they are able to generate HPCs in a fully human, autologous system, which can be used to further generate immune cells for therapy. This protocol is adaptable to mass production by bioreactors. NCI seeks licensees for these methods of generating HPCs in a 3D co-culture with hMSCs to be used in a variety of applications such as treatment of blood disorders, regenerative medicine, and antibody production.

Newly Improved Method and Composition for Treating Genetically Linked Diseases of the Eye

To improve the transduction efficiency the inventors at the National Eye Institute (NEI) have developed a novel, non-invasive approach of applying electric current in combination with a gene therapy vector. This minimally invasive strategy significantly improves the transduction efficiency of AAV vectors in the mouse retina. This represents an improved method for restoring high levels of RS1 expression in the retina of X-linked retinoschisis (XLRS) patients. The NEI seeks a licensing and/or co-development partner to commercialize its AAV-RS1 Gene Therapy for XLRS.

Design and Biological Activity of Novel Stealth Polymeric Lipid Nanoparticles for Enhanced Delivery of Hydrophobic Photodynamic Therapy Drugs

Scientists at the National Cancer Institute (NCI) developed a novel stealth lipid-based nanoparticle formulation comprising phospholipid, DC8,9PC and a polyethylene glycol-ated (PEGylated) lipid – such as DSPE-PEG2000 – that efficiently package a high amounts of hydrophobic photodynamic drug (PDT) – such as HPPH – in stable vesicles. This HPPH-loaded liposome system demonstrates higher serum stability and ambient temperature stability upon storage. It exhibits increased tumor accumulation and improved animal survival in mice tumor models compared to the formulation in current clinical trials. The NCI seeks co-development partners and/or corporate licensees for the application of the technology as an anti-cancer therapeutic.

Pages