You are here

Share:

Search Technologies

Showing 1-20 of 239 results found

Adjuvanted Mucosal Subunit Vaccines for Preventing SARS-CoV-2 Transmission and Infection

Investigators at the National Cancer Institute (NCI) have discovered an adjuvanted mucosal subunit vaccine to prevent SARS-CoV-2 transmission and infection. The mucosal vaccine is composed of a novel molecular adjuvant nanoparticle that induces robust humoral and cellular immunity, as well as trained innate immunity with enhanced protection against respiratory SARS-CoV-2 exposure. The technology is available for potential licensing or collaborative research to co-develop these therapeutic targets.

siRNA Delivery Using Hexameric Tetrahedral RNA Nanostructures for Gene Silencing

Researchers at the National Cancer Institute (NCI), in collaboration with researchers at the University of California, Santa Barbara (UCSB), developed a tetrahedral-shaped RNA nanoparticle for the delivery of siRNA to activate RNAi. The tetrahedral RNA nanoparticles can contain twelve Dicer substrate RNA duplexes for gene silencing. The NCI seeks parties interested in co-development or licensing of these tetrahedral RNA nanoparticles.

Virus-Like Particles That Can Deliver Proteins and RNA

The present invention describes novel virus-like particles (VLPs) that are capable of binding to and replicating within a target mammalian cell, including human cells. The claimed VLPs are safer than viral delivery because they are incapable of re-infecting target cells. The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.

Ex-vivo Production of Regulatory B-Cells for Use in Auto-immune Diseases

Regulatory B-cells (Breg) play an important role in reducing autoimmunity and reduced levels of these cells are implicated in etiology of several auto-inflammatory diseases. Despite their impact in many diseases, their physiological inducers are unknown.  The National Eye Institute seeks parties interested in licensing or collaborative research to co-develop a process for the production of regulatory B-Cells for use in auto-immune indications.

Niclosamide for Treating Adrenocortical Cancer (ACC)

Researchers at the NCI have developed a novel treatment for adrenocortical cancer (ACC) by repositioning the drug niclosamide. New treatments for ACC can help patients with this rare and aggressive disease, where the current standard of care involves highly toxic options. The NCI seeks parties to license this method of treating adrenocortical cancer using niclosamide.

New Chimeric Antigen Receptor (CAR) Format for Developing Improved Adoptive Cell Therapies

Researchers at the National Cancer Institute (NCI) have developed a new format for expressing Chimeric Antigen Receptors (CARs) that is available for licensing and co-development. The inventors found that there was an increased therapeutic effect when using their proprietary (anti-glypican 3 [GPC3]) hYP7 antibody in this format. The novel technology is useful for improving CAR therapies to treat a range of cancers.

Synthetic lipopeptide inhibitors of RAS oncoproteins

It is well known that overactive Ras signaling is linked to many forms of cancer, and despite intensive efforts worldwide to develop effective inhibitors of Ras, to date there is no anti-Ras inhibitor in clinical use. Researchers at the NCI’s Cancer and Inflammation Program, in collaboration with scientists at Vanderbilt University and the University of Illinois in Chicago, have identified a number of small peptidomimetic compounds that bind to Ras proteins with nanomolar affinity. NCI’s Cancer and Inflammation Program seeks partners interested in licensing or co-development of synthetic, highly potent cell-permeable inhibitors of Ras that bind to the protein directly.

Synthetic Bacterial Nanoparticles as Drug and Vaccine Delivery Vehicles

Engineered bacterial spores can provide many useful functions such as the treatment of infections, use as an adjuvant for the delivery of vaccines, and the enzymatic degradation of environmental pollutants. Researchers at the National Cancer Institute’s Laboratory of Molecular Biology have developed a novel, synthetic spore husk-encased lipid bilayer (SSHEL) particle that is uniquely suited for a variety of these functions. NCI seeks partners to license and/or co-develop this technology toward commercialization.

Peptide Mimetic Ligands of Polo-like Kinase 1 Polo Box Domain (“Plk1 PBD Portfolio”)

Researchers at the National Cancer Institute (NCI) have developed peptidomimetic inhibitors that disrupt Polo-like kinase 1 (Plk1)-mediated protein interactions by targeting polo-box domain (PBD). These compounds are designed to selectively cause mitotic arrest in cancer cells with abnormal Plk1 expression. Researchers seek licensing and/or co-development research collaborations to further develop the inhibitors.

Single domain CD4, HIV-1 Antibodies, and Fusion Proteins for treatment of HIV

Researchers at the National Cancer Institute (NCI) have developed single domain human CD4 proteins to inhibit HIV-1 entry and improved human domain antibodies against HIV-1. Fusion proteins comprising the single domain CD4 and HIV-1 antibody can be used to effectively neutralize HIV-1 in vitro. Researchers seek licensing for development of these antibody-based therapeutics for the treatment of HIV-1.

Angiogenesis-Based Cancer Therapeutic

The National Cancer Institute's Urologic Oncology Branch seeks interested parties to co-develop antagonists to VEGF-A and hepatocyte growth factor (HGF) that block signal transduction and associated cellular responses.

RP2 and RPGR Vectors For Treating X-linked Retinitis Pigmentosa

The National Eye Institute (NEI) seek research co-development or licensees for advancing AAV8/9-based therapies for X-linked forms of retinitis pigmentosa (XLRP) caused by mutations in RPGR (retinitis pigmentosa GTPase regulator) or RP2 (retinitis pigmentosa 2) gene.

Agonist Epitopes for the Development of a Human Papillomavirus (HPV) Therapeutic Vaccine

To date, there is no FDA-approved therapeutic vaccine for human papillomavirus (HPV). Researchers at the National Cancer Institute (NCI) have discovered agonist epitopes for the development of an HPV therapeutic vaccine. NCI is seeking parties interested in licensing and/or co-developing HPV agonist epitopes that enhance the activation of cytotoxic T lymphocytes (CTL) and lysis of human tumor cells.

Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage

In collaboration with the National Cancer Institute (NCI), researchers at The Eunice Kennedy Shriver National Institute on Child Health and Human Development (NICHD) have discovered monoclonal antibodies that bind to matrilin-3, a protein specifically expressed in cartilage tissue, that could be used for treating or inhibiting growth plate disorders, such as a skeletal dysplasia or short stature. The monoclonal antibodies can also be used to target therapeutic agents, such as those for anti-arthritis, to cartilage tissue. NICHD seeks statements of capability or interest from parties interested in collaborative research to co-develop, evaluate, and/or commercialize treatment of skeletal disorders using targeting antibodies.

Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma

Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

Pages