You are here

Share:

Search Technologies

Showing 141-160 of 223 results found

Leucine Zipper-bearing Kinase (LZK) -Targeting Degraders and Methods of Use

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for Leucine Zipper-bearing Kinase (LZK) -targeting proteolysis-targeting chimeras (PROTACs) as a therapeutic for treating head and neck, lung and ovarian squamous cell carcinoma, as well as small cell lung cancers which over-express LZK.

Treating Vascular Disease, Injury, and Inflammation

The Laboratory of Cardiovascular Sciences of the National Institute on Aging, is seeking parties interested in licensing or collaborative research to co-develop a cell surface protein observed to reduce inflammation and related injuries. In vivo and in vitro data are available.

Peptide Inhibitors for Viral Infections and as Anti-inflammatory Agents

IFN-gamma and IL-10 are cytokine signaling molecules that play fundamental roles in inflammation, cancer growth and autoimmune diseases.  Unfortunately, there are no specific inhibitors of IFN-gamma or IL-10 on the market to date. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop selective IL-10 and IFN-gamma peptide inhibitors.

Agonist Epitopes for the Development of a Human Papillomavirus (HPV) Therapeutic Vaccine

To date, there is no FDA-approved therapeutic vaccine for human papillomavirus (HPV). Researchers at the National Cancer Institute (NCI) have discovered agonist epitopes for the development of an HPV therapeutic vaccine. NCI is seeking parties interested in licensing and/or co-developing HPV agonist epitopes that enhance the activation of cytotoxic T lymphocytes (CTL) and lysis of human tumor cells.

Aryl Hydantoin Heterocycle Compounds that Target the Androgen Receptor for Prostate Cancer Treatment

Researchers at the National Cancer Institute (NCI) have developed aryl hydantoin heterocycles that target the androgen receptor (AR). NCI seeks research co-development partners and/or licensees to develop these compounds as therapeutics for prostate cancer. As these compounds consist of both AR agonists and antagonists, they may also be effective therapeutics for androgen dysfunctional disorders, such as androgen deficiency disorders or hyperandrogenism.

Methods for Producing Stem Cell-Like Memory T Cells for Use in T Cell-Based Immunotherapies

Researchers at the National Cancer Institute (NCI) seek research & co-development and/or licensees for a novel, ex vivo method by which stem cell-like memory T cells (Tscm) can be generated by stimulating naïve T cells in the presence of inhibitors of GSK-3beta, which are capable of activating the Wnt pathway. These Tscm cells, generated using GSK-3beta inhibitors, display enhanced survival and proliferation upon transfer, have multipotent capacity to generate all memory and effector T cell subsets, and show increased anti-tumor activity in a humanized mouse tumor model.

T Cell Receptors Targeting KRAS Mutants for Cancer Immunotherapy/Adoptive Cell Therapy

Researchers at the National Institutes of Health have identified a collection of TCRs that exclusively recognize the common hotspot driver mutations in KRAS antigen, expressed by a variety of epithelial cancers, including pancreatic, colorectal and lung cancer. The mutated KRAS variants are recognized by the TCRs in the context of specific Class I/Class II HLA alleles. These TCRs can be used for a variety of experimental therapeutic, diagnostic and research applications.

Dual-Function Protein ATIA for Diagnostics and Therapeutics of Glioblastoma

Investigators at the NCI discovered an Anti-TNF Induced Apoptosis (ATIA) protein, which protects cells against apoptosis.  ATIA is highly expressed in glioblastoma and astrocytomas and its inhibition results in increased cell sensitivity to TNF-related apoptosis-inducing ligand induced cell death.  The National Cancer Institute seeks parties interested in licensing or collaborative research to further develop, evaluate, or commercialize glioblastoma diagnostics and therapeutics.

Therapeutic Immunotoxins with Increased Half-Life and Anti-Tumor Activity

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for mesothelin targeting Recombinant Immunotoxins (RITs). These RITs have been engineered by site specific modification with polyethylene glycol (PEG) to have an increased serum half-life, while maintaining high cytotoxicity and have greatly improved anti-tumor activity.

Scytovirin Domain 1 Related Polypeptides

Researchers at the NCI seek licensing for novel anti-HIV peptide therapeutics. The researchers developed novel proteins for HIV inhibition. Scytovirin is a potent anti-HIV protein with two domains having strong symmetry. NCI researchers produced a much smaller, functional, scytovirin domain polypeptide – SD1 – for use as a HIV therapeutic.

Peptide Mimetic Ligands of Polo-like Kinase 1 Polo Box Domain (“Plk1 PBD Portfolio”)

Researchers at the National Cancer Institute (NCI) have developed peptidomimetic inhibitors that disrupt Polo-like kinase 1 (Plk1)-mediated protein interactions by targeting polo-box domain (PBD). These compounds are designed to selectively cause mitotic arrest in cancer cells with abnormal Plk1 expression. Researchers seek licensing and/or co-development research collaborations to further develop the inhibitors.

Schweinfurthins and Uses Thereof

Researchers at the National Cancer Institute (NCI) developed novel analogs of the natural product schweinfurthins to treat neurofibromatosis type 1 (NF1). The compounds demonstrate effective growth inhibition in malignant peripheral nerve sheath tumor cell lines and mouse models of astrocytomas. Researchers seek licensing and/or co-development research collaboration opportunities to further develop the schweinfurthin analogs.

Fully-human Heavy-chain-only Anti-B-cell Maturation Antigen (BCMA) Chimeric Antigen Receptors (CARs)

Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target B-cell maturation antigen (BCMA) are strong therapeutic candidates for patients with plasma cell malignancy diseases such as, multiple myeloma (MM), as well as for patients with Hodgkin’s lymphoma. BCMA is a cell surface protein preferentially expressed on a subset of B cells and mature plasma cells, but not on other cells in the body. The limited expression of BCMA on B and plasma cells makes BCMA an attractive therapeutic target for B cell and plasma cell malignancy diseases. The 12 anti-BCMA CARs described are fully human CARS and have the potential to treat patients with various plasma cell and B cell malignancy diseases.

Pages