You are here

Share:

Search Technologies

Showing 1-20 of 256 results found

T cell tuning molecules that modify the immune response to cancer cells

Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seek partners to collaborate on in vitro studies to validate these potential immunomodulators and to conduct in vivo studies in a murine cancer model to determine the effects of ligands (e.g., antibodies) to the proteins on the immune response to cancer cells. Preference will be given to responses received by March 31, 2016.

Interleukin 24 (IL-24) to treat inflammatory diseases

Researchers at the National Eye Institute (NEI) have developed a novel therapeutic strategy of using recombinant IL-24 protein to treat inflammatory diseases that involve the proinflammatory T-helper 17 cell (Th17) response, such as uveitis, multiple sclerosis, rheumatoid arthritis, and Crohn’s disease. Researchers at the NEI seek licensing and/or co-development research collaborations for co-developing this technology as strategic partners or licensing it for commercialization.

Combination of Near Infrared Photoimmunotherapy Targeting Cancer Cells and Host-Immune Activation

Investigators at the National Cancer Institute (NCI) seek co-development partners and/or licensees for a new therapeutic approach that selectively targets cancer cells and prevents tumor regrowth. The novel method combines antibody-IR700 molecules and Near-Infrared Photo Immunotherapy (NIR-PIT), which has shown great potential in targeting tumors via a host immunogenic response, with already known and available anti-cancer immunomodulators to further enhance the antitumor response. The investigators have shown in mouse models that, when used in combination, NIR-PIT-treatment and standard antitumor agents conferred a potent vaccine-like effect, not only curing mice of local and distant cancers but successfully immunizing them against tumor regrowth.

Cancer Therapeutic Based on Hypoxia Inducible Factor 1 (HIF-1) Inhibitors

Researchers at the National Cancer Institute (NCI) have developed small molecule compounds that inhibit activity of hypoxia inducible factor 1 (HIF-1). The HIF-1 inhibitor compounds are designed around the scaffold of naturally occurring metabolite eudistidine. The invention compounds have demonstrated activity against cancer and malaria in vitro.

Monoclonal Antibodies and Immunoconjugates Directed to the Non-ShedPortion (“Stalk”) of Mesothelin are Excellent Candidates for Developing Therapeutic Agents

Antibodies that specifically recognize and bind to the unshed portion (“stalk”) of human mesothelin are strong therapeutic candidates because they maintain contact with the cancer cell for a longer duration than other anti-mesothelin antibodies that are currently available. The National Cancer Institute (NCI) has developed such antibodies that specifically recognize and bind to the stalk of human mesothelin with high affinity. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

Overexpression of Phf19 on T Cells Enhances Therapeutic Effects of T Cell-Based Therapies (such as Chimeric Antigen Receptor [CAR] Therapies)

Researchers at the National Cancer Institute (NCI) have developed a method to epigenetically reprogram CD8+ T cell fate by expressing elevated levels of the polycomb-like protein, Phf19. This technology is useful for improving T cell-based immunotherapies (such as CAR therapies) to treat a range of infectious diseases and cancers. NCI seeks licensing or co-development partners for this invention.

IgG4 Hinge Containing Chimeric Antigen Receptors Targeting Glypican-1 For Treating Solid Tumors

Researchers at the National Cancer Institute have developed a glypican-1 (GPC1) chimeric antigen receptor (CAR)-T cells using short immunoglobin subclass 4 (IgG4) hinge sequences that are highly potent against GPC1-expressing tumors. NCI seeks research co-development partners and/or licensees to advance the development of GPC1-IgG4 hinge CARs for the treatment of pancreatic cancer and other GPC1-expressing tumors.

Single domain CD4, HIV-1 Antibodies, and Fusion Proteins for treatment of HIV

Researchers at the National Cancer Institute (NCI) have developed single domain human CD4 proteins to inhibit HIV-1 entry and improved human domain antibodies against HIV-1. Fusion proteins comprising the single domain CD4 and HIV-1 antibody can be used to effectively neutralize HIV-1 in vitro. Researchers seek licensing for development of these antibody-based therapeutics for the treatment of HIV-1.

CD206 Small Molecule Modulators, Their Use and Methods for Preparation

Researchers at the National Cancer Institute (NCI) have discovered a small molecule that binds to CD206 and activates M2-like tumor associated macrophages resulting in innate and adaptive anti-tumor responses. NCI seeks research co-development or licensees for CD206 small molecule modulators as a therapeutic for CD206-expressing cancers (such as pancreatic, sarcoma, head and neck, lung, gastric, triple negative breast, renal cell, colorectal cancer, melanoma).

EGFRvIII Antibodies for the Treatment of Human Cancer

Researchers at the National Cancer Institute (NCI) have isolated seven monoclonal antibodies that bind to the human epidermal growth factor receptor variant III (EGFRvIII) but not wildtype EGFR. The NCI seeks research co-development partners or licensees for monoclonal antibodies that specifically target cancer-expressed EGFR.

Method of Neoantigen-Reactive T Cell Receptor (TCR) Isolation from Peripheral Blood of Cancer Patients

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a novel method for isolation and construction of neoantigen-reactive T-cell receptors (TCRs) from peripheral blood lymphocytes (PBL) of cancer patients. This method generates accurate scoring of single T cells from tumors, as well as facilitates identification and reconstruction of unknown TCRs for immunotherapy.

Novel Regulatory B cells for Treatment of Cancer and Autoimmune Disease

Cancer cells have been found to directly activate resting B cells to form suppressive regulatory B cells (tBregs) and utilize them to evade immune surveillance and mediate metastasis. tBregs directly inhibit CD4+ and CD8+ T cell activity in a cell contact-dependent manner, induce FoxP3+ T cell activity, and promote Treg-dependent metastasis. The National Institute on Aging's Immunotherapeutics Unit, is seeking parties interested in licensing or co-development of regulatory B cells to control autoimmune diseases and strategies that inactivate tBregs to control cancer immune escape. 

Pages