You are here

Share:

Search Technologies

Showing 121-140 of 212 results found

Potassium Hydroxy Citrate Promotes Longevity and Efficacy of Anti-Tumor T cells for Adoptive Cell Therapy (ACT)

Adoptive cell therapy (ACT) using tumor-specific T cells leads to complete tumor regression in some cancer patients. However, limiting the efficacy of this therapy is that T cells become functionally exhausted and have short half-lives after adoptive transfer. Researchers at the National Cancer Institute (NCI) have discovered a novel method to generate long-lived memory tumor-specific T cells with enhanced tumor clearance and persistence upon in vivo transfer. NCI is seeking parties interested in licensing and/or co-developing potassium hydroxy citrate to promote longevity and efficacy of tumor-specific T cells.

Self-Assembling Nanoparticles Composed of Transmembrane Peptides and Their Application for Specific Intra-Tumor Delivery of Anti-Cancer Drugs

Researchers at the National Cancer Institute (NCI) seek licensing and/or co-development research collaborations for peptide-based virus-like nanoparticles that are fully synthetic and capable of delivering cytotoxic, radioactive, and imaging agents. The researchers are interested in commercial partners to conduct pre-clinical and pre-IND studies.

Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

Chimeric Antigen Receptors (CARs) are engineered proteins that can be used in a therapeutic capacity when expressed by an immune cell (e.g., a T cell). Specifically, CARs comprise a targeting domain (such as an antibody or binding fragment thereof) as well as domains that activate immune cells. By selecting a targeting domain that binds to a protein that is selectively expressed on a cancer cell, it is possible to target immune cells to the cancer cells. Upon binding to the target cell, the immune cells are activated, leading to the destruction of the cancer cell. This therapeutic approach holds great promise, as evidenced by the recent FDA-approval of CAR-T cell therapies, KYMRIAH and YESCARTA, both of which target CD19.

Novel Small Molecule Antagonists Targeting Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Long Non-coding RNA (lncRNA) as Anticancer Agents

Researchers at the National Cancer Institute (NCI) have developed an invention describing compounds that bind and alter the nuclear copy number of a long non-coding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), with the proposed consequence of inducing slower tumor growth and a reduction in metastasis. The NCI seeks licensing and/or co-development research collaborations for novel small molecule antagonists targeting MALAT1 lncRNA as anticancer agents.

Novel Small Molecules that Inhibit Hepatitis B Virus Replication by Targeting Packaging of Pre-genomic RNA

Researchers at the National Cancer Institute (NCI) have developed an invention describing novel small molecule agonists of a previously unidentified hepatitis B virus (HBV) RNA packaging signal (pgRNA) as promising therapeutic strategies for HBV infections, either alone or in combination with other antiviral agents. The NCI seeks licensing and/or co-development research collaborations for these novel small molecules that inhibit hepatitis B virus replication by targeting pre-genomic RNA.

Atypical Inhibitors of Monoamine Transporters; Method of Making; and Use Thereof

The technology is a series of modafinil analogues that bind with moderate to high affinity to the dopamine (DA) transporter (DAT). Some compounds also have affinity for the serotonin (5-HT) transporter (SERT) and/or sigma-1 receptor. The compounds retain the desired dopamine transporter affinity with greater metabolic stability over previously described unsubstituted piperazine ring analogues. Importantly, these compounds have no predicted addictive liability. Also disclosed are methods for treating substance use disorders as well as other neuropsychiatric disorders such as ADHD, depression, narcolepsy, and cognitive impairment. Researchers at the National Institute on Drug Abuse (NIDA) seek licensing and/or co-development research collaborations for further development and commercialization of the compounds.

Fibroblast Growth Factor Receptor 4 (FGFR4) Monoclonal Antibodies and Methods of Their Use

Researchers at the National Cancer Institute (NCI) developed several high-affinity monoclonal antibodies to treat Fibroblast Growth Factor Receptor 4 (FGFR4)-related diseases including rhabdomyosarcoma and cancers of the liver, lung, pancreas, ovary and prostate. These antibodies have been used to generate antibody-drug conjugates (ADCs) and chimeric antigen receptors (CARs), which are capable of specifically targeting and killing diseased cells. NCI seeks co-development opportunities or licensees for this technology.

siRNA Delivery Using Hexameric Tetrahedral RNA Nanostructures for Gene Silencing

Researchers at the National Cancer Institute (NCI), in collaboration with researchers at the University of California, Santa Barbara (UCSB), developed a tetrahedral-shaped RNA nanoparticle for the delivery of siRNA to activate RNAi. The tetrahedral RNA nanoparticles can contain twelve Dicer substrate RNA duplexes for gene silencing. The NCI seeks parties interested in co-development or licensing of these tetrahedral RNA nanoparticles.

Polymeric Delivery Platform for Therapeutics

The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for a polymeric drug delivery platform that targets scavenger receptor A1 (SR-A1), a receptor highly expressed in macrophages, monocytes, mast cells, dendritic cells (myeloid lineages), and endothelial cells. The platform delivers various immunomodulatory therapeutic cargo including small molecule drugs, therapeutic peptides, and vaccines, to the lymphatic system and myeloid/antigen presenting cell (APC) sub-populations.

Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma

Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

Treatment of GPR101-Related, Growth Hormone-Related Disorders Such as Gigantism, Dwarfism or Acromegaly

Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) have developed a cell line that stably over-expresses GPR101. GPR101 inhibitors and agonists may be used to treat gigantism, acromegaly or dwarfism. The NICHD seeks licensing and/or co-development research partners to collaborate on the identification and characterization of GPR101 inhibitors (antagonists and inverse agonists) and agonists with the goal of identifying agents to treat gigantism, acromegaly or dwarfism.

Chimeric Antigen Receptors to CD276 for Treating Cancer

This licensing opportunity from the National Cancer Institute concerns the development of CARs comprising an antigen-binding fragment derived from the MGA271 antibody. The resulting CARs can be used in adoptive cell therapy treatment for neuroblastoma and other tumors that express CD276.

Schweinfurthins and Uses Thereof

Researchers at the National Cancer Institute (NCI) developed novel analogs of the natural product schweinfurthins to treat neurofibromatosis type 1 (NF1). The compounds demonstrate effective growth inhibition in malignant peripheral nerve sheath tumor cell lines and mouse models of astrocytomas. Researchers seek licensing and/or co-development research collaboration opportunities to further develop the schweinfurthin analogs.

Therapeutics for Neurodegenerative Disorders and Cancer Using Lenalidomide Analogs

Novel thalidomide analogs and their use as immunomodulatory agents are disclosed in this invention by scientists at the National Institute on Aging (NIA). These therapeutic compounds could reduce chronic systemic and central nervous system inflammation. The NIA seeks licensing or co-development partners to commercialize this technology.

Efficient Cell-Free Production of Papillomavirus Gene Transfer Vectors

Researchers at the National Cancer Institute (NCI) developed cell free methods for efficiently producing high titer, papillomavirus virus-based gene transfer vectors. These vectors can potentially be used for vaccines and/or cancer therapeutic applications. NCI seeks licensing and/or co-development research collaborations for further development of these vectors.

Monoclonal Antibodies and Immunoconjugates Directed to the Non-ShedPortion (“Stalk”) of Mesothelin are Excellent Candidates for Developing Therapeutic Agents

Antibodies that specifically recognize and bind to the unshed portion (“stalk”) of human mesothelin are strong therapeutic candidates because they maintain contact with the cancer cell for a longer duration than other anti-mesothelin antibodies that are currently available. The National Cancer Institute (NCI) has developed such antibodies that specifically recognize and bind to the stalk of human mesothelin with high affinity. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

Pages