You are here

Share:

Search Technologies

Showing 1-20 of 34 results found

Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage

In collaboration with the National Cancer Institute (NCI), researchers at The Eunice Kennedy Shriver National Institute on Child Health and Human Development (NICHD) have discovered monoclonal antibodies that bind to matrilin-3, a protein specifically expressed in cartilage tissue, that could be used for treating or inhibiting growth plate disorders, such as a skeletal dysplasia or short stature. The monoclonal antibodies can also be used to target therapeutic agents, such as those for anti-arthritis, to cartilage tissue. NICHD seeks statements of capability or interest from parties interested in collaborative research to co-develop, evaluate, and/or commercialize treatment of skeletal disorders using targeting antibodies.

Autophagy Modulators For Use in Treating Cancer

Investigators from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) have identified five autophagy-inhibiting compounds (WX8 family) through a high-throughput screening. The NICHD seeks licensees and/or co-development partners for methods to treat cancer by administering these autophagy-inhibiting compounds.

MRI-Based Method for Characterizing Axonal Microstructure in Traumatic Brain Injury

Researchers at the NICHD developed a method for non-invasively determining the distribution of pore lengths and radii within a matrix thereby characterizing cognitive defects observed in patients with Traumatic Brain Injury (TBI). The NICHD seeks licensing and/or co-development research collaborations to bring this invention to the public.

Therapeutics Against Pathogenic Coronaviruses

The Eunice Kennedy Shriver National Institute of Child Health and Human Development seeks research co-development partners and/or licensees to further develop and commercialize PIKfyve phosphatidyl linositol kinase inhibitors for the treatment of pathogenic coronaviruses.

Composite Gels and Methods of their Use in Tissue Repair, Drug Delivery, and as Implants

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks research and development partners or licensees for novel composite hydrogels that can be used in tissue repair and other applications. Single gel networks used in tissue engineering and tissue repair applications generally become softer and more flaccid as they swell. The gels described in this technology, however, which comprise a swellable crosslinked polymer hydrogel dispersed in a crosslinked polymer matrix, mimic critical material properties of tissue extracellular matrix (ECM), for instance, becoming stiffer and tougher upon swelling.

Diagnostic Assays for the Detection of Thyroid Cancer

The Eunice Kennedy Shriver National Institute of Child and Human Development’s (NICHD) Pediatric Growth and Nutrition Branch seek partners to co-develop a diagnostic assay to detect thyroid cancer.

Tamperless Tensor Elastography Imaging

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks research co-development partners and/or licensees for the development of tamperless tensor elastography imaging in assessing disease (e.g., cancer), normal and abnormal developmental processes, degeneration and trauma in the brain and other soft tissues, and other applications.

Treatment of GPR101-Related, Growth Hormone-Related Disorders Such as Gigantism, Dwarfism or Acromegaly

Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) have developed a cell line that stably over-expresses GPR101. GPR101 inhibitors and agonists may be used to treat gigantism, acromegaly or dwarfism. The NICHD seeks licensing and/or co-development research partners to collaborate on the identification and characterization of GPR101 inhibitors (antagonists and inverse agonists) and agonists with the goal of identifying agents to treat gigantism, acromegaly or dwarfism.

La Protein as a Novel Regulator of Osteoclastogenesis

The National Institute of Child Health and Human Development (NICHD) seeks research co-development partners and/or licensees for the further development of methods to target the La protein for the regulation of osteoclastogenesis.

Tumor Tissues Harboring Mutations in cAMP-specific Phosphodiesterases

The National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize clinical samples with genetic mutations associated with endocrine tumors.

Device for Simulating Explosive Blast and Imaging Biological Specimens

Researchers at the National Institute of Child Health and Human Development (NICHD) developed a device simulating a blast shock wave of the type produced by explosive devices such as bombs. The invention allows for the real-time study of blast effects on in vitro cell models. NICHD researchers seek licensing opportunities to further develop this device.

Polarimetric Accessory for Colposcope

The National Institute of Child Health and Human Development (NICHD) seeks licensing and/or co-development of a colposcope attachment that resolves tissue borne specular flare.

Isotropic Generalized Diffusion Tensor MRI

The Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD) seeks research and co-development partners or licensees for an invention that discloses the diagnosis of pathologies in tissue related to changes in cell size, cellularity, cell infiltration, and other abnormalities detected by bulk water diffusion changes.

T cell tuning molecules that modify the immune response to cancer cells

Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seek partners to collaborate on in vitro studies to validate these potential immunomodulators and to conduct in vivo studies in a murine cancer model to determine the effects of ligands (e.g., antibodies) to the proteins on the immune response to cancer cells. Preference will be given to responses received by March 31, 2016.

A Novel Transgenic Zebrafish Line Reporting Dynamic Epigenetic Changes

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks licensees for a novel “EpiTag” epigenetic reporter transgenic zebrafish line that provides a versatile and powerful whole-animal platform for visualizing and assessing the effects of mutants, experimental treatments, or chemical compounds targeting epigenetic regulation as well as studying epigenetic regulation of global- or tissue-specific gene expression during development.

Pages