You are here

Share:

Search Technologies

Showing 1-20 of 23 results found

Cell Lines Expressing Nuclear and/or Mitochondrial RNAse H1

The National Institute of Child Health & Human Development (NICHD), Program in Genomics of Differentiation, seeks interested parties to further co-develop small molecule inhibitors of RNase H1, especially in regards to genome instability, transcription, and translation.

Device for Simulating Explosive Blast and Imaging Biological Specimens

Researchers at the National Institute of Child Health and Human Development (NICHD) developed a device simulating a blast shock wave of the type produced by explosive devices such as bombs. The invention allows for the real-time study of blast effects on in vitro cell models. NICHD researchers seek licensing opportunities to further develop this device.

Diagnostic Assays for the Detection of Thyroid Cancer

The Eunice Kennedy Shriver National Institute of Child and Human Development’s (NICHD) Pediatric Growth and Nutrition Branch seek partners to co-develop a diagnostic assay to detect thyroid cancer.

Improved Antibodies Against ERBB4/HER4

The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Section on Molecular Neurobiology seeks parties interested in licensing or collaborative research to further evaluate or commercialize specific rabbit monoclonal antibodies generated against the ErbB4 receptor (also known as HER4) that have been validated for specificity using tissue sections and extracts from ErbB4 knockout mice.

Isotropic Generalized Diffusion Tensor MRI

The Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD) seeks research and co-development partners or licensees for an invention that discloses the diagnosis of pathologies in tissue related to changes in cell size, cellularity, cell infiltration, and other abnormalities detected by bulk water diffusion changes.

MADCO-Accelerated Multidimensional Diffusion MRI

The marginal distribution constrained optimization (MADCO) methodology is disclosed wherein a 2D (or higher-dimensional) spectrum is estimated from initial 1D marginal distribution data. These 1D marginal distributions are used as constraints in the reconstruction of the 2D spectra. MADCO accelerates and improves the reconstruction of multidimensional NMR relaxation/diffusion spectra, making it suitable for MRI applications on a voxel-by-voxel basis by vastly reducing the amount of data acquired and data necessary for creating MRI images.

Methods of Treating or Preventing Demyelation Using Thrombin Inhibitors

Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (“NICHD”), seek CRADA partner or collaboration for development of agents to treat multiple sclerosis or other conditions associated with myelin remodeling by administering an agent that inhibits cleavage of Neurofascin 155 or Caspr1. The agent could be a thrombin inhibitor, an agent that inhibits thrombin expression, an anti-thrombin antibody that specifically inhibits thrombin mediated cleavage of Neurofascin 155, a mutated version or fragment of Neurofascin 155 or Caspr1, or antibodies to Neurofascin 155 or Caspr1.

Microosmometer for the Study of a Wide Range of Biological, Macromolecular, Polymeric, Gel, or Other Samples

Scientists at the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD) have discovered that changes in the osmotic pressure of tissue or hydroscopic samples having a mass of less than about one microgram and that can exert a high osmotic pressure can be measured by this method. The NICHD seeks research and co-development or licensees for a method of measuring small physical changes in small quantities of materials.

Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage

Researchers at The Eunice Kennedy Shriver National Institute on Child Health and Human Development (NICHD) have discovered monoclonal antibodies that bind to matrilin-3, a protein specifically expressed in cartilage tissue, that could be used for treating or inhibiting growth plate disorders, such as a skeletal dysplasia or short stature. The monoclonal antibodies can also be used to target therapeutic agents, such as anti-arthritis agents, to cartilage tissue. NICHD seeks statements of capability or interest from parties interested in collaborative research to co-develop, evaluate, or commercialize treatment of skeletal disorders using targeting antibodies.

MRI-Based Method for Characterizing Axonal Microstructure in Traumatic Brain Injury

Researchers at the NICHD developed a method for non-invasively determining the distribution of pore lengths and radii within a matrix thereby characterizing cognitive defects observed in patients with Traumatic Brain Injury (TBI). The NICHD seeks licensing and/or co-development research collaborations to bring this invention to the public.

Non-Invasive In Vivo MRI Method to Image Salient Features of Axons and Nerves

Scientists from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) have developed a novel diffusion Magnetic Resonance Imaging (MRI) experimental and modeling framework to measure new and useful microanatomical features of white matter (and gray matter), which are closely related to the function of the central nervous system (CNS) or peripheral nervous system (PNS). This invention is available for licensing or co-development partners.

Quantitative In Vivo Methods for Measuring Brain Networks

Researchers at the NICHD seek licensing and/or co-development research collaborations for a Magnetic Resonance Imaging (MRI) method to quantitatively measure in vivo the estimated conduction time of nerve impulses in the brain.

Pages