The National Cancer Institute (NCI) seeks co-development partners and/or licensees for polymer-cast inserts for cell histology and microscopy; a system for high throughput three-dimensional (3D) cell culture and screening microscopy.
The Eunice Kennedy Shriver National Institute of Child Health and Human Development seeks research co-development partners and/or licensees further to develop and commercialize its novel cells and populations thereof for the treatment of oncological, bacterial, fungal and other conditions.
Pluripotent stem cells are a promising source of T cells for a variety of clinical applications. However, current in vitro methods of T cell differentiation result in the generation of cells with aberrant phenotypes. Researchers at the National Cancer Institute (NCI) have now developed methodology for generating induced pluripotent stem cell thymic emigrants (iTE). Antigen-specific CD8αβ+ iTEs exhibited functional properties in vitro that were almost indistinguishable from natural naïve CD8αβ+ T cells, including vigorous expansion and robust anti-tumor activity. iTEs recapitulated many of the transcriptional programs of naïve T cells in vivo and revealed a striking capacity for engraftment, memory formation, and efficient tumor destruction. The NCI seeks licensing and/or co-development research collaborations for this invention.
Researchers at the NCI seek licensing and/or co-development research collaborations for an anti-viral polypeptide, Griffithsin, and its antiviral use against Hepatitis C, Severe Acute Respiratory Syndrome (SARS), H5N1, or Ebola.
The National Cancer Institute (NCI) seek parties interested in collaborative research and/or licensing to further develop neutralizing nanobodies targeting Lassa virus as a possible treatment of Lassa virus infections.
Researchers at the National Cancer Institute (NCI) developed a multiplex assay to determine the efficacy of apoptosis-related drugs targeting the Bcl2 family of proteins or aid in the selection of cancer patients likely to respond. The NCI seeks partners for co-development or licensees for commercialization of novel immunoassays for determining or predicting patient response to cancer therapy.
Researchers at the National Cancer Institute (NCI) have developed several novel small-molecule inhibitors directed against HPPK, a bacterial protein, as potential antimicrobial agents. The NCI seeks co-development partners or licensees to further develop these novel small-molecule HPPK inhibitors as broad-spectrum bactericidal agents.
The National Cancer Institute (NCI) and the National Institute of Child Health and Human Development (NICHD) seek research co-development partners and/or licensees for an antiviral treatment that can target SARS-Cov-2 replication in Covid-19 patients.
Scientists at the National Cancer Institute (NCI) developed a novel stealth lipid-based nanoparticle formulation comprising phospholipid, DC8,9PC and a polyethylene glycol-ated (PEGylated) lipid – such as DSPE-PEG2000 – that efficiently package a high amounts of hydrophobic photodynamic drug (PDT) – such as HPPH – in stable vesicles. This HPPH-loaded liposome system demonstrates higher serum stability and ambient temperature stability upon storage. It exhibits increased tumor accumulation and improved animal survival in mice tumor models compared to the formulation in current clinical trials. The NCI seeks co-development partners and/or corporate licensees for the application of the technology as an anti-cancer therapeutic.
The National Cancer Institute (NCI) has a novel mouse model of autoimmunity based on chronic interferon-gamma expression (ARE-Del). This mouse can be used as an in vivo model to study female-biased autoimmune diseases, including: Systemic Lupus Erythematosus, Primary Biliary Cholangitis, and Ovarian Failure Syndrome.
Scientists at the National Cancer Institute (NCI) have developed a novel delivery platform in which the scaffold of an anionic hydrogel (AcVES3) can be attenuated to deliver therapeutic small molecules, peptides, proteins, nanoparticles, or whole cells. The NCI seeks collaborators and licensees for the development of this technology in various clinical and laboratory applications.
Researchers at the University of California, Irvine (UCI) and NCI seek licensing for a new family of far-red to near-infrared emission coumarin-based luciferins (CouLuc) with complementary mutant enzymes.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for the development and commercialization of a diagnostic assay that detects sequence-specific (viral) RNA.
The National Cancer Institute (NCI) seeks licensees for an automated digital pathology device which integrates tissue sectioning, staining, and image acquisition. The device is compatible with high-throughput data analyses.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a panel of single domain antibodies (nanobodies) that target the spike (S) protein of SARS-CoV-2.
Investigators at the National Cancer Institute (NCI) have discovered an adjuvanted mucosal subunit vaccine to prevent SARS-CoV-2 transmission and infection. The mucosal vaccine is composed of a novel molecular adjuvant nanoparticle that induces robust humoral and cellular immunity, as well as trained innate immunity with enhanced protection against respiratory SARS-CoV-2 exposure. The technology is available for potential licensing or collaborative research to co-develop these therapeutic targets.
Scientists at the National Cancer Institute (NCI) have discovered a bacterial exonuclease VII (ExoVII) inhibitor that increases the potency of widely used quinolone antibiotics targeting prokaryotic type IIA topoisomerases. NCI seeks research co-development partners and/or licensees for the development of ExoVII inhibitors as new antibiotic adjuvants to boost the efficacy of quinolone antibiotics and/or restore the susceptibility of resistant bacteria.
The National Cancer Institute (NCI) seeks potential non-exclusive licensees for a collection of mutated single-round vectors for testing of potential Integrase Strand Transfer Inhibitor (INSTI) and reverse transcriptase (RT) inhibitor drugs.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a method to identify T cells with preferred phenotypes for increased response from adoptive immunotherapy.