You are here

Share:

Search Technologies

Showing 1-20 of 36 results found

A peptide hydrogel for use in vascular anastomosis

Surgery specialists from Johns Hopkins University, in collaboration with researchers at the National Cancer Institute (NCI), developed peptide hydrogel compositions and methods to suture blood vessels during microsurgery. The hydrogels particularly benefit surgeons in whole tissue transplant procedures. The NCI seeks co-development research collaborations for further development of this technology.

Anti-bacterial Treatments Using Peptide-Based Inhibitors of the STAT3-IL10 Pathway

Tuberculosis (TB) is an infectious disease that typically affects the lungs. Current therapies include a panel of antibiotics given over a range of 6-9 months. As a result of the expense of treatment, the extended timeframe needed for effective treatment, and the scarcity of medicines in some developing countries, patient compliance with TB treatment is very low and results in multi-drug resistant TB (MDR-TB). There remains a need for a faster, more effective treatment for TB. NCI researchers seek licensing and/or co-development of peptide inhibitors of STAT3 and IL-10 developed to treat bacterial infections such as tuberculosis. See aslo: NIH inventions E-164-2007 and E-167-2010

Anti-CD133 Monoclonal Antibodies as Cancer Therapeutics

Researchers at NCI developed a rabbit monoclonal antibody that recognizes the marker for CD133 and is useful in pharmacodynamic testing to inform targeted anti-cancer chemotherapy development and clinical monitoring. CD133 is a cell surface glycoprotein used as a marker and expressed in stem cells such as hematopoietic stem cells, endothelial progenitor cells and neural stem cells. The NCI seeks collaborative co-development or licensing partners for this technology.

Brachyury-directed Vaccine for the Prevention or Treatment of Cancers

Researchers at the NCI have developed a vaccine technology that stimulates the immune system to selectively destroy metastasizing cells. Stimulation of T cells with the Brachyury peptide promote a robust immune response and lead to targeted lysis of invasive tumor cells. NCI seeks licensing or co-development of this invention.

Cancer Therapeutic based on Stimulation of Natural Killer T-cell Anti-tumor Activity

Investigators at the National Cancer Institute''s Vaccine Branch have found that beta-mannosylceramide (Beta-ManCer) promotes immunity in an IFN-gamma independent mechanism and seek statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize beta-ManCer.

Diagnostic Assay for Determining Patient Response to Apoptosis-related Cancer Therapy

Researchers at the National Cancer Institute (NCI) developed a multiplex assay to determine the efficacy of apoptosis-related drugs targeting the Bcl2 family of proteins or aid in the selection of cancer patients likely to respond. The NCI seeks partners for co-development or licensees for commercialization of novel immunoassays for determining or predicting patient response to cancer therapy.

Efficient Methods to Prepare Hematopoietic Progenitor Cells in vitro for Therapeutic Use

Multi-potential hematopoietic progenitor cells (HPC) can differentiate into any class of blood cells, and are highly useful in regenerative medicine, immunology, and cancer immunotherapy. Current methods to generate HPCs are limited either due to the use of animal products, or the high cost and low efficiency of animal product free systems. Researchers at the National Cancer Institute (NCI) have developed a protocol to prepare HPCs from human induced pluripotent stem cells (hiPSC), using human mesenchymal stem cells (hMSC) in a three-dimensional (3D) co-culture condition. Thus, they are able to generate HPCs in a fully human, autologous system, which can be used to further generate immune cells for therapy. This protocol is adaptable to mass production by bioreactors. NCI seeks licensees for these methods of generating HPCs in a 3D co-culture with hMSCs to be used in a variety of applications such as treatment of blood disorders, regenerative medicine, and antibody production.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

In vitro Generation of an Autologous Thymic Organoid from Human Pluripotent Stem Cells

The thymus is the only organ capable of producing conventional, mature T cells; a crucial part of the adaptive immune system. However, its efficiency and function are progressively reduced as we age, leading to a compromised immune system in the elderly. Moreover, production of T cells with specific receptors is an important concern for cancer immunotherapy. Current in vitro methods produce immature T cells that are not useful for therapy. Researchers at the National Cancer Institute (NCI) have generated an autologous thymic organoid from human pluripotent stem cells to address this problem. The organoid can be used to develop clinical applications such as production of autologous T and natural killer T (NKT) cells and reconstitution of the adaptive immune system. NCI is seeking licensees for the thymic organoid and the method of its generation to be used in a variety of clinical applications.

Methods For Treating or Preventing Inflammation and Periodontitis

Natural products have long been considered a source of biologically active molecules against health disorders, including bone-loss related diseases. Cinnamolyoxy-mammeisin (CNM), can be isolated from Brazilian geopropolis and demonstrates anti-inflammatory activity. Researchers at the National Cancer Institute (NCI), in collaboration with researchers at the Piracicaba Dental School, University of Campinas, Brazil, have shown CNM also demonstrates inhibition of oral bone loss. This invention is available for licensing and/or co-development opportunities.

Methods of analyzing virus-derived therapeutics

Researchers at the National Cancer Institute’s Biopharmaceutical Development Program recently developed massively parallel sequencing methods for virus-derived therapeutics such as viral vaccines and oncolytic immunotherapies, for which the NCI seeks licensees or co-development collaborations.

Micro-Dose Calibrator for Pre-clinical Radiotracer Assays

Pre-clinical radiotracer biomedical research involves the use of compounds labeled with radioisotopes, including radio-ligand bio-distribution studies, cell binding studies, immune cell labeling techniques, and α-based therapies. Before this Micro-Dose Calibrator, measurement of pre-clinical level dosage for small animal studies was inaccurate and unreliable. This dose calibrator is a prototype ready for customer testing and scale-up. It is designed to accurately measure radioactive doses in the range of 50 nCi (1.8 kBq) to 100 µCi (3.7 MBq) with 99% precision. The NCI seeks co-development or licensing to commercialize it. Alternative uses will be considered.

Module to Freeze and Store Frozen Tissue

Researchers at the National Cancer Institute (NCI) have developed an engineered storage unit for frozen tissue, that provides a permanent base on which to mount tissue frozen in OCT and an enclosure for storage. The unit provides for chain-of-custody labeling and acts as an insulating container to protect the specimen. Other elements include devices for freezing the tissue to the base, as well as a holder for the base to facilitate cryosectioning. Application of the storage system allows a frozen tissue specimen to be moved between storage and cryosectioning without loss of label, deformation of tissue, or thermal alterations.

New Insect Sf9-ET Cell Line for Determining Baculovirus Titers

The National Cancer Institute (NCI) seeks licensing partners for a novel modified insect cell line, Sf9-ET, that can quickly and efficiently determine baculovirus titers during the expression of recombinant proteins from a baculovirus-based protein expression system.

Pages