You are here

Share:

Search Technologies

Showing 1-20 of 54 results found

Human Antibodies Against Middle East Respiratory Syndrome Coronavirus

The National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to co-develop antibody-based therapeutic against MERS-CoV, including animal studies, cGMP manufacturing, and clinical trials.

Biomarker signature development: microRNAs for biodosimetry

Alterations in microRNAs (miRNAs), a type of small non-coding RNAs, have been reported in cells/tumors subjected to radiation exposure, implying that miRNAs play an important role in cellular stress response to radiation. NCI researchers evaluated small non-coding RNAs, long non-coding RNAs (lncRNA), and mRNA, as potential non-invasive biomarkers for radiation biodosimetry. The NCI Radiation Oncology Branch seeks parties interested in licensing or co-development of RNA biomarker signature(s) for radiation biodosimetry.

High-throughput Assay to Identify New Cancer Drugs

The National Cancer Institute seeks parties interested in collaborative research to evaluate or commercialize a diagnostic tool that can identify new drugs that increase chromosome instability.

Ratio Based Biomarkers for the Prediction of Cancer Survival

The NCI seeks licensees or co-development partners for this technology, which describes compositions, methods and kits for identifying, characterizing biomolecules expressed in a sample that are associated with the presence, the development, or progression of cancer.

Methods of analyzing virus-derived therapeutics

Researchers at the National Cancer Institute’s Biopharmaceutical Development Program recently developed massively parallel sequencing methods for virus-derived therapeutics such as viral vaccines and oncolytic immunotherapies, for which the NCI seeks licensees or co-development collaborations.

Gene Signature for Predicting Solid Tumors Patient Prognosis

The National Cancer Institute’s Laboratory of Human Carcinogenesis seeks parties to license or co-develop a method of predicting the prognosis of a patient diagnosed with hepatocellular carcinoma (HCC) or breast cancer by detecting expression of one or more cancer-associated genes, and a method of identifying an agent for use in treating HCC.

GTF2I Mutations as a Genetic Marker for Prognosis of Thymic Malignancies

Despite the growing number of biomarkers that are used for diagnosing and treating carcinomas in general, cancers of the thymus are still diagnosed, stratified and treated by a costly combination of histology, surgery and radiological procedures.  The lack of qualified biomarkers associated with thymomas and thymic carcinomas has also hampered the development of targeted therapies. The National Cancer Institute seeks partners interested in licensing or collaborative research to co-develop a prognostic PCR based test for thymic malignancies.

Zirconium-89 PET Imaging Agent for Cancer

This technology is a new generation of rationally designed chelating agents that improve the complexation of Zirconium-89 for PET imaging of cancers.

Diagnostic Marker for Improving Treatment Outcomes of Hepatitis C

NCI Researchers have discovered Interferon-lambda 4 (IFNL4), a protein found through analysis of genomic data. Preliminary studies indicate that this protein may play a role in the clearance of HCV and may be a new target for diagnosing and treating HCV infection. The National Cancer Institute (NCI) Division of Cancer Epidemiology and Genetics (DCEG) Immunoepidemiology Branch is seeking statements of capability or interest from parties interested in in-licensing or collaborative research to further co-develop a gene-based diagnostic for Hepatitis C virus (HepC, HCV).

Pages